NASA Technical Report


Book Description







Radiative Heat Transfer


Book Description

Radiative Heat Transfer, Fourth Edition is a fully updated, revised and practical reference on the basic physics and computational tools scientists and researchers use to solve problems in the broad field of radiative heat transfer. This book is acknowledged as the core reference in the field, providing models, methodologies and calculations essential to solving research problems. It is applicable to a variety of industries, including nuclear, solar and combustion energy, aerospace, chemical and materials processing, as well as environmental, biomedical and nanotechnology fields. Contemporary examples and problems surrounding sustainable energy, materials and process engineering are an essential addition to this edition. - Includes end-of-chapter problems and a solutions manual, providing a structured and coherent reference - Presents many worked examples which have been brought fully up-to-date to reflect the latest research - Details many computer codes, ranging from basic problem solving aids to sophisticated research tools




Measurements in Heat Transfer


Book Description




Radiation Heat Transfer, Augmented Edition


Book Description

Revised to include more information on analytical models for wavelength independence, Radiation Heat Transfer, Augmented Edition has been rearranged, providing problems within each chapter rather than at the end of the book. Written by Ephraim M. Sparrow, a generalist who works on a very broad range of problems that encompasses almost all mechanical engineering topics, the book presents key ideas without being exhaustive. Sparrow oversees the Laboratory for Heat Transfer and Fluid Flow Practice, whose function in to undertake both industrially bases and fundamental problems that fall within the bounds of heat transfer and fluid flow.




Thermal Radiation Heat Transfer


Book Description

Explore the Radiative Exchange between Surfaces Further expanding on the changes made to the fifth edition, Thermal Radiation Heat Transfer, 6th Edition continues to highlight the relevance of thermal radiative transfer and focus on concepts that develop the radiative transfer equation (RTE). The book explains the fundamentals of radiative transfer, introduces the energy and radiative transfer equations, covers a variety of approaches used to gauge radiative heat exchange between different surfaces and structures, and provides solution techniques for solving the RTE. What’s New in the Sixth Edition This revised version updates information on properties of surfaces and of absorbing/emitting/scattering materials, radiative transfer among surfaces, and radiative transfer in participating media. It also enhances the chapter on near-field effects, addresses new applications that include enhanced solar cell performance and self-regulating surfaces for thermal control, and updates references. Comprised of 17 chapters, this text: Discusses the fundamental RTE and its simplified forms for different medium properties Presents an intuitive relationship between the RTE formulations and the configuration factor analyses Explores the historical development and the radiative behavior of a blackbody Defines the radiative properties of solid opaque surfaces Provides a detailed analysis and solution procedure for radiation exchange analysis Contains methods for determining the radiative flux divergence (the radiative source term in the energy equation) Thermal Radiation Heat Transfer, 6th Edition explores methods for solving the RTE to determine the local spectral intensity, radiative flux, and flux gradient. This book enables you to assess and calculate the exchange of energy between objects that determine radiative transfer at different energy levels.




Jožef Stefan: His Scientific Legacy on the 175th Anniversary of His Birth


Book Description

Most scientists and engineers are familiar with the name Josef Stefan primarily from the Stefan-Boltzmann law, which relates the amount of energy transferred by radiation to the absolute temperature raised to the fourth power. Stefan determined this law from experimental data, and it was later theoretically verified by his former student, Ludwig Boltzmann. However, it is interesting to know that this is the same Stefan who lent his name to the solid-liquid phase change problem, and concepts related to molecular diffusion and convective motion driven by surface evaporation or ablation. Stefan counted among his students Sigmund Freud, who was so inspired by his physics instructor that he incorporated scientific methods into psychoanalysis. This invaluable book details not only Josef Stefan’s original contributions in these areas, but the current state-of-the-art of his pioneering work.




Analysis of Heat-transfer Effects in Rocket Nozzles Operating with Very High-temperature Hydrogen


Book Description

An analytical technique suitable for & the solution of complex energy transfer problems involving coupled radiant and convective energy transfer is developed. Solutions for the coupled axial wall energy flax distribution in rocket nozzles using hydrogen as a propellant are presented. Flow rates and temperatures studied are near those forecast for gaseous-core nuclear-propulsion systems. Parameters varied are nozzle shape, inlet propellant temperature, mean reactor cavity temperature, and nozzle wall temperature level. The effects of variation of the propellant radiation absorption coefficient with pressure, temperature, and wavelength are presented, and real property variations are used where they appear to be significant. Comparison is made to a simplified, coupled solution using a modified second-order one-dimensional diffusion equation for the radiative transfer. At the temperature levels assumed, radiative transfer may account for a greater portion of the total energy transfer over important portions of the nozzle, and its effects cannot, therefore, be neglected. Extreme energy flaxes (near 3XlO to the 8 Btu/(hr)(sq ft)) are observed for certain cases, and this implies that new nozzle cooling techniques must be developed.