Muon Bibliography


Book Description







Muon Capture on Light Nuclei


Book Description

This work investigates the muon capture reactions 2H(\mu^-, \nu_\mu)nn and 3He(\mu^-, \nu_\mu)3H and the contribution to their total capture rates arising from the axial two-body currents obtained imposing the partially-conserved-axial-current (PCAC) hypothesis. The initial and final A=2 and 3 nuclear wave functions are obtained from the Argonne v_{18} two-nucleon potential, in combination with the Urbana IX three-nucleon potential in the case of A=3. The weak current consists of vector and axial components derived in chiral effective field theory. The low-energy constant entering the vector (axial) component is determined by reproducting the isovector combination of the trinucleon magnetic moment (Gamow-Teller matrix element of tritium beta-decay). The total capture rates are 393.1(8) s^{-1} for A=2 and 1488(9) s^{-1} for A=3, where the uncertainties arise from the adopted fitting procedure.













Muon Physics


Book Description

Muon plays an important role in elementary particle, nuclear and atomic physics. Muon was discovered in 1936 in cosmic radiation. At present, it is very important in the framework of the Standard Model. With the discovery of a charm quantum number, muon and the accompanying muon neutrino play an important role in the quark-lepton model of elementary particles being combined in the second generation of the Standard Model. Muonic processes provide important information on the low energy limit of the weak interaction. This book describes the various aspects of muon physics, taking into account the most recent experiments conducted.