Radiowave Propagation in Satellite Communications


Book Description

Radiowave Propagation in Communications was written with two basic objec tives: (l) to present an up-to-date review of the major radiowave propagation phenomena which hinder reliable space communications, and (2) to describe how these propagation phenomena affect the design and performance of satellite communications systems. Earth-orbiting satellites are employed extensively for the relay of information in a vast array of telecommunications, meteorological, government, and sci entific applications. Satellite systems rely on the transmission of radiowaves to and from the satellite and are dependent on the propagation characteristics of the transmission path, primarily the earth's atmosphere. Radiowave propagation thus plays a very important part in the design and ultimate performance of space communications systems. This book presents, for the first time, the meshing in a single publication of the fundamentals of radiowave propagation factors with a discussion of the practical consequences of these factors on satellite communications systems. Two major subfie1ds are involved in this book. Radiowave propagation, which is basically applied electromagnetic theory, provides the theory and an alytical tools for the first several chapters. Later chapters then apply propagation effects to the field of electrical engineering involved with satellite communi cations. The material progresses from the essential aspects of radiowave prop agation to the application of practical methods and techniques in the design and performance of satellite communications systems.




Radio Wave Propagation and Channel Modeling for Earth-Space Systems


Book Description

The accurate design of earth–space systems requires a comprehensive understanding of the various propagation media and phenomena that differ depending on frequencies and types of applications. The choice of the relevant channel models is crucial in the design process and constitutes a key step in performance evaluation and testing of earth–space systems. The subject of this book is built around the two characteristic cases of satellite systems: fixed satellites and mobile satellite systems. Radio Wave Propagation and Channel Modeling for Earth–Space Systems discusses the state of the art in channel modeling and characterization of next-generation fixed multiple-antennas and mobile satellite systems, as well as propagation phenomena and fade mitigation techniques. The frequencies of interest range from 100 MHz to 100 GHz (from VHF to W band), whereas the use of optical free-space communications is envisaged. Examining recent research advances in space-time tropospheric propagation fields and optical satellite communication channel models, the book covers land mobile multiple antennas satellite- issues and relative propagation campaigns and stratospheric channel models for various applications and frequencies. It also presents research and well-accepted satellite community results for land mobile satellite and tropospheric attenuation time-series single link and field synthesizers. The book examines aeronautical communications channel characteristics and modeling, relative radio wave propagation campaigns, and stratospheric channel model for various applications and frequencies. Propagation effects on satellite navigation systems and the corresponding models are also covered.




Satellite Communications Systems Engineering


Book Description

The first edition of Satellite Communications Systems Engineering (Wiley 2008) was written for those concerned with the design and performance of satellite communications systems employed in fixed point to point, broadcasting, mobile, radio navigation, data relay, computer communications, and related satellite based applications. This welcome Second Edition continues the basic premise and enhances the publication with the latest updated information and new technologies developed since the publication of the first edition. The book is based on graduate level satellite communications course material and has served as the primary text for electrical engineering Masters and Doctoral level courses in satellite communications and related areas. Introductory to advanced engineering level students in electrical, communications and wireless network courses, and electrical engineers, communications engineers, systems engineers, and wireless network engineers looking for a refresher will find this essential text invaluable.




Radiowave Propagation


Book Description

Providing an introduction to the theory of radiowave propagation, this volume progresses to examine the impact of this theory on modern communication systems such as mobile radio and satellite links.




Radio Wave Propagation Fundamentals, Second Edition


Book Description

This completely updated second edition of an Artech House classic provides a thorough introduction to the basic principles of electromagnetic wave propagation of radio frequencies in real-world conditions, fully updated by including new achievements in theory and technology. It serves as an invaluable daily reference for practitioners in the field and as a complete, organized text on the subject. This comprehensive resource covers a wide range of essential topics, from the classification of radio waves, electromagnetic wave theory, and antennas for RF radio links, to the impact of the earth surface on the propagation of ground waves, atmospheric affects in radio wave propagation, and radio wave reception. The book explores the propagation of the ground radio waves, namely the waves that propagate in vicinity of the earth's surface (e.g., guided by that interface), without involvement of any atmospheric effects. Specifics of the high-frequency (HF) radio propagation due to reflections from ionospheric layers is studied, based on commonly used models of the ionospheric vertical profiles. Scattering of the radio waves of UHF and higher frequency bands from the random variations of the tropospheric refraction index (from tiny air turbulences) are also considered by using the principles of statistical radio-physics. Analysis of propagation conditions on real propagation paths, including analysis of the power budget of the VHF/UHF link to assure its stability (percentage of availability within observation time frame), terrestrial, broadcast, mobile, and satellite RF links are presented. The engineering design of the cellular networks, including LTE 4G, 5G and upcoming higher generations is explored. HF propagation predictions for extremely long-range links design for commercial and military applications are explained. Packed with examples and problems, this book provides a theoretical background for astrophysical, aeronomy and geophysical instrumentation design.







Radio Wave Propagation for Telecommunication Applications


Book Description

This book describes the physical mechanisms involved in the propagation of electromagnetic waves in the radiofrequency range, inside and outside buildings, in the terrestrial and near space environments, with a special focus on mobile radio communication. It combines a theoretical and an experimental approaches with an understanding of the physical environment through adequate formulations of the laws of electromagnetism. It should thus provide the background needed by advanced students and development engineers for the conception of high quality and reliable telecommunication systems.




Propagation of Radiowaves


Book Description

This book has been fully updated to reflect the latest developments in the field of radio communications. This book introduces the basic concepts and mechanisms of radiowave propagation engineering in both the troposphere and ionosphere, and includes greater emphasis on the needs of digital technologies and new kinds of radio systems.







Satellite Communications Systems


Book Description

Revisions to 5th Edition by: Zhili Sun, University of Surrey, UK New and updated edition of this authoritative and comprehensive reference to the field of satellite communications engineering Building on the success of previous editions, Satellite Communications Systems, Fifth Edition covers the entire field of satellite communications engineering from orbital mechanics to satellite design and launch, configuration and installation of earth stations, including the implementation of communications links and the set-up of the satellite network. This book provides a comprehensive treatment of satellite communications systems engineering and discusses the technological applications. It demonstrates how system components interact and details the relationship between the system and its environment. The authors discuss the systems aspects such as techniques enabling equipment and system dimensioning and state of the art technology for satellite platforms, payloads and earth stations. New features and updates for the fifth edition include: More information on techniques allowing service provision of multimedia content Extra material on techniques for broadcasting, including recent standards DVB-RCS and DVB-S2 (Digital Video Broadcasting -Return Channel Satellite and -Satellite Version 2) Updates on onboard processing By offering a detailed and practical overview, Satellite Communications Systems continues to be an authoritative text for advanced students, engineers and designers throughout the field of satellite communications and engineering.