Randomness Through Computation: Some Answers, More Questions


Book Description

This review volume consists of a set of chapters written by leading scholars, most of them founders of their fields. It explores the connections of Randomness to other areas of scientific knowledge, especially its fruitful relationship to Computability and Complexity Theory, and also to areas such as Probability, Statistics, Information Theory, Biology, Physics, Quantum Mechanics, Learning Theory and Artificial Intelligence. The contributors cover these topics without neglecting important philosophical dimensions, sometimes going beyond the purely technical to formulate age old questions relating to matters such as determinism and free will.The scope of Randomness Through Computation is novel. Each contributor shares their personal views and anecdotes on the various reasons and motivations which led them to the study of Randomness. Using a question and answer format, they share their visions from their several distinctive vantage points.




Algorithmic Randomness and Complexity


Book Description

Computability and complexity theory are two central areas of research in theoretical computer science. This book provides a systematic, technical development of "algorithmic randomness" and complexity for scientists from diverse fields.




Band Tailings and Deep Defects in Semiconductors


Book Description

The present textbook treats the effects of temperature upon weakly disordered hydrogenated amorphous silicon and hydrogenated amorphous germanium, as well as the effect of weak disorder upon more complex systems such as GaAs and Al2Gal-xAs alloy. The effects of disorder-induced band tailing upon deep levels in compound semiconductor alloys are also studied.







Biennial Report


Book Description




Randomness


Book Description

From the ancients' first readings of the innards of birds to your neighbor's last bout with the state lottery, humankind has put itself into the hands of chance. Today life itself may be at stake when probability comes into play--in the chance of a false negative in a medical test, in the reliability of DNA findings as legal evidence, or in the likelihood of passing on a deadly congenital disease--yet as few people as ever understand the odds. This book is aimed at the trouble with trying to learn about probability. A story of the misconceptions and difficulties civilization overcame in progressing toward probabilistic thinking, Randomness is also a skillful account of what makes the science of probability so daunting in our own day. To acquire a (correct) intuition of chance is not easy to begin with, and moving from an intuitive sense to a formal notion of probability presents further problems. Author Deborah Bennett traces the path this process takes in an individual trying to come to grips with concepts of uncertainty and fairness, and also charts the parallel path by which societies have developed ideas about chance. Why, from ancient to modern times, have people resorted to chance in making decisions? Is a decision made by random choice fair? What role has gambling played in our understanding of chance? Why do some individuals and societies refuse to accept randomness at all? If understanding randomness is so important to probabilistic thinking, why do the experts disagree about what it really is? And why are our intuitions about chance almost always dead wrong? Anyone who has puzzled over a probability conundrum is struck by the paradoxes and counterintuitive results that occur at a relatively simple level. Why this should be, and how it has been the case through the ages, for bumblers and brilliant mathematicians alike, is the entertaining and enlightening lesson of Randomness.










Computability and Randomness


Book Description

The interplay between computability and randomness has been an active area of research in recent years, reflected by ample funding in the USA, numerous workshops, and publications on the subject. The complexity and the randomness aspect of a set of natural numbers are closely related. Traditionally, computability theory is concerned with the complexity aspect. However, computability theoretic tools can also be used to introduce mathematical counterparts for the intuitive notion of randomness of a set. Recent research shows that, conversely, concepts and methods originating from randomness enrich computability theory. The book covers topics such as lowness and highness properties, Kolmogorov complexity, betting strategies and higher computability. Both the basics and recent research results are desribed, providing a very readable introduction to the exciting interface of computability and randomness for graduates and researchers in computability theory, theoretical computer science, and measure theory.