Real World Medical Applications


Book Description

MEDNET2000 is the leading world conference about the Internet in the Healthcare sector. The MEDNET conferences aim at bringing together key developers, researchers and users, with either medical or technological backgrounds (or both). MEDNET2000 focuses on "real world" medical applications. In which ways does medicine really benefit from the exploding Internet technology, beyond gadgetry and focusing explicitly on the patients benefit. All points of view, both technical and medical are of interest. The book/magazine presents all abstract of the scientific papers, tutorials and some keynote presentations. Following topics are covered: Clinical Applications, Telemedicine, Education, Epidemiology, Evidence Based Medicine, Medical Records, Portal Sites and Legal Issues.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




Quality Assurance in the Era of Individualized Medicine


Book Description

There is a significant deficiency among contemporary medicine practices reflected by experts making medical decisions for a large proportion of the population for which no or minimal data exists. Fortunately, our capacity to procure and apply such information is rapidly rising. As medicine becomes more individualized, the implementation of health IT and data interoperability become essential components to delivering quality healthcare. Quality Assurance in the Era of Individualized Medicine is a collection of innovative research on the methods and utilization of digital readouts to fashion an individualized therapy instead of a mass-population-directed strategy. While highlighting topics including assistive technologies, patient management, and clinical practices, this book is ideally designed for health professionals, doctors, nurses, hospital management, medical administrators, IT specialists, data scientists, researchers, academicians, and students.




Nanomaterials for Medical Applications


Book Description

Structurally the work is demarcated into the six most popular areas of research: (1) biocompatibility of nanomaterials with living organisms in their various manifestations (2) nanobiosensors for clinical diagnostics, detecting biomolecules which are useful in the clinical diagnosis of genetic, metabolically acquired, induced or infectious disease (3) targeted drug delivery for nanomaterials in their various modifications (4) nanomedical devices and structures which are used in the development of implantable medical devices and structures such as nanorobots (5) nanopharmacology, as novel nanoparticles are increasingly engineered to diagnose conditions and recognize pathogens, identify ideal pharmaceutical agents to treat the condition or pathogens, fuel high-yield production of matched pharmaceuticals (potentially in vivo), locate, attach or enter target tissue,




Deep Learning Applications in Medical Imaging


Book Description

Before the modern age of medicine, the chance of surviving a terminal disease such as cancer was minimal at best. After embracing the age of computer-aided medical analysis technologies, however, detecting and preventing individuals from contracting a variety of life-threatening diseases has led to a greater survival percentage and increased the development of algorithmic technologies in healthcare. Deep Learning Applications in Medical Imaging is a pivotal reference source that provides vital research on the application of generating pictorial depictions of the interior of a body for medical intervention and clinical analysis. While highlighting topics such as artificial neural networks, disease prediction, and healthcare analysis, this publication explores image acquisition and pattern recognition as well as the methods of treatment and care. This book is ideally designed for diagnosticians, medical imaging specialists, healthcare professionals, physicians, medical researchers, academicians, and students.




Fully Homomorphic Encryption in Real World Applications


Book Description

This book explores the latest developments in fully homomorphic encryption (FHE), an effective means of performing arbitrary operations on encrypted data before storing it in the ‘cloud’. The book begins by addressing perennial problems like sorting and searching through FHE data, followed by a detailed discussion of the basic components of any algorithm and adapting them to handle FHE data. In turn, the book focuses on algorithms in both non-recursive and recursive versions and discusses their realizations and challenges while operating in the FHE domain on existing unencrypted processors. It highlights potential complications and proposes solutions for encrypted database design with complex queries, including the basic design details of an encrypted processor architecture to support FHE operations in real-world applications.




Evidence-Based Medicine and the Changing Nature of Health Care


Book Description

Drawing on the work of the Roundtable on Evidence-Based Medicine, the 2007 IOM Annual Meeting assessed some of the rapidly occurring changes in health care related to new diagnostic and treatment tools, emerging genetic insights, the developments in information technology, and healthcare costs, and discussed the need for a stronger focus on evidence to ensure that the promise of scientific discovery and technological innovation is efficiently captured to provide the right care for the right patient at the right time. As new discoveries continue to expand the universe of medical interventions, treatments, and methods of care, the need for a more systematic approach to evidence development and application becomes increasingly critical. Without better information about the effectiveness of different treatment options, the resulting uncertainty can lead to the delivery of services that may be unnecessary, unproven, or even harmful. Improving the evidence-base for medicine holds great potential to increase the quality and efficiency of medical care. The Annual Meeting, held on October 8, 2007, brought together many of the nation's leading authorities on various aspects of the issues - both challenges and opportunities - to present their perspectives and engage in discussion with the IOM membership.




Registries for Evaluating Patient Outcomes


Book Description

This User’s Guide is intended to support the design, implementation, analysis, interpretation, and quality evaluation of registries created to increase understanding of patient outcomes. For the purposes of this guide, a patient registry is an organized system that uses observational study methods to collect uniform data (clinical and other) to evaluate specified outcomes for a population defined by a particular disease, condition, or exposure, and that serves one or more predetermined scientific, clinical, or policy purposes. A registry database is a file (or files) derived from the registry. Although registries can serve many purposes, this guide focuses on registries created for one or more of the following purposes: to describe the natural history of disease, to determine clinical effectiveness or cost-effectiveness of health care products and services, to measure or monitor safety and harm, and/or to measure quality of care. Registries are classified according to how their populations are defined. For example, product registries include patients who have been exposed to biopharmaceutical products or medical devices. Health services registries consist of patients who have had a common procedure, clinical encounter, or hospitalization. Disease or condition registries are defined by patients having the same diagnosis, such as cystic fibrosis or heart failure. The User’s Guide was created by researchers affiliated with AHRQ’s Effective Health Care Program, particularly those who participated in AHRQ’s DEcIDE (Developing Evidence to Inform Decisions About Effectiveness) program. Chapters were subject to multiple internal and external independent reviews.




Computer Vision In Medical Imaging


Book Description

The major progress in computer vision allows us to make extensive use of medical imaging data to provide us better diagnosis, treatment and predication of diseases. Computer vision can exploit texture, shape, contour and prior knowledge along with contextual information from image sequence and provide 3D and 4D information that helps with better human understanding. Many powerful tools have been available through image segmentation, machine learning, pattern classification, tracking, reconstruction to bring much needed quantitative information not easily available by trained human specialists. The aim of the book is for both medical imaging professionals to acquire and interpret the data, and computer vision professionals to provide enhanced medical information by using computer vision techniques. The final objective is to benefit the patients without adding to the already high medical costs.




Telemedicine


Book Description

Telemedicineâ€"the use of information and telecommunications technologies to provide and support health care when distance separates the participantsâ€"is receiving increasing attention not only in remote areas where health care access is troublesome but also in urban and suburban locations. Yet the benefits and costs of this blend of medicine and digital technologies must be better demonstrated before today's cautious decision-makers invest significant funds in its development. Telemedicine presents a framework for evaluating patient care applications of telemedicine. The book identifies managerial, technical, policy, legal, and human factors that must be taken into account in evaluating a telemedicine program. The committee reviews previous efforts to establish evaluation frameworks and reports on results from several completed studies of image transmission, consulting from remote locations, and other telemedicine programs. The committee also examines basic elements of an evaluation and considers relevant issues of quality, accessibility, and cost of health care. Telemedicine will be of immediate interest to anyone with interest in the clinical application of telemedicine.