Trapped Particles and Fundamental Physics


Book Description

Fundamental physics with trapped particles (ions, atoms or molecules) rep resents one of the most challenging and promising fields of investigation, with impressive results during this last decade. The use of both particle trapping and laser cooling techniques, together with traditional techniques of atomic physics, represents a powerlul tool of investigation for a wide range of fields. Experiments spanning very high resolution spectroscopy to Bose-Einstein condensation, tests of the Standard Model ofelectroweak interactions to precise mass measurements, detailed analysis of ~ decay to QED tests have been presented by leading scientists who reported the most recent results and discussed the perspectives in the different fields. During the ten working days of the School, 39 lecturers, 6 seminars and two poster sessions have been organized by offering to the attendants a.complete pic ture of the present research status about the new frontiers of atomic physics. L. Caneschi gave a general overview of the Standard Model of electroweak interac tions. He pointed out the achievements and the limits of validity of the model.




Collected Papers of Carl Wieman


Book Description

Carl Wieman's contributions have had a major impact on defining the field of atomic physics as it exists today. His ground-breaking research has included precision laser spectroscopy; using lasers and atoms to provide important table-top tests of theories of elementary particle physics; the development of techniques to cool and trap atoms using laser light, particularly in inventing much simpler, less expensive ways to do this; the understanding of how atoms interact with one another and light at ultracold temperatures; and the creation of the first Bose-Einstein condensation in a dilute gas, and the study of the properties of this condensate. In recent years, he has also turned his attention to physics education and new methods and research in that area. This indispensable volume presents his collected papers, with annotations from the author, tracing his fascinating research path and providing valuable insight about the significance of the works.







The BCS-BEC Crossover and the Unitary Fermi Gas


Book Description

Recent experimental and theoretical progress has elucidated the tunable crossover, in ultracold Fermi gases, from BCS-type superconductors to BEC-type superfluids. The BCS-BEC Crossover and the Unitary Fermi Gas is a collaborative effort by leading international experts to provide an up-to-date introduction and a comprehensive overview of current research in this fast-moving field. It is now understood that the unitary regime that lies right in the middle of the crossover has remarkable universal properties, arising from scale invariance, and has connections with fields as diverse as nuclear physics and string theory. This volume will serve as a first point of reference for active researchers in the field, and will benefit the many non-specialists and graduate students who require a self-contained, approachable exposition of the subject matter.







Bose-Einstein Condensation in Dilute Gases


Book Description

Introduction to ultracold atomic Bose and Fermi gases for advanced undergraduates, graduates, experimentalists and theorists.




Recapturing a Future for Space Exploration


Book Description

More than four decades have passed since a human first set foot on the Moon. Great strides have been made in our understanding of what is required to support an enduring human presence in space, as evidenced by progressively more advanced orbiting human outposts, culminating in the current International Space Station (ISS). However, of the more than 500 humans who have so far ventured into space, most have gone only as far as near-Earth orbit, and none have traveled beyond the orbit of the Moon. Achieving humans' further progress into the solar system had proved far more difficult than imagined in the heady days of the Apollo missions, but the potential rewards remain substantial. During its more than 50-year history, NASA's success in human space exploration has depended on the agency's ability to effectively address a wide range of biomedical, engineering, physical science, and related obstacles-an achievement made possible by NASA's strong and productive commitments to life and physical sciences research for human space exploration, and by its use of human space exploration infrastructures for scientific discovery. The Committee for the Decadal Survey of Biological and Physical Sciences acknowledges the many achievements of NASA, which are all the more remarkable given budgetary challenges and changing directions within the agency. In the past decade, however, a consequence of those challenges has been a life and physical sciences research program that was dramatically reduced in both scale and scope, with the result that the agency is poorly positioned to take full advantage of the scientific opportunities offered by the now fully equipped and staffed ISS laboratory, or to effectively pursue the scientific research needed to support the development of advanced human exploration capabilities. Although its review has left it deeply concerned about the current state of NASA's life and physical sciences research, the Committee for the Decadal Survey on Biological and Physical Sciences in Space is nevertheless convinced that a focused science and engineering program can achieve successes that will bring the space community, the U.S. public, and policymakers to an understanding that we are ready for the next significant phase of human space exploration. The goal of this report is to lay out steps and develop a forward-looking portfolio of research that will provide the basis for recapturing the excitement and value of human spaceflight-thereby enabling the U.S. space program to deliver on new exploration initiatives that serve the nation, excite the public, and place the United States again at the forefront of space exploration for the global good.




New Directions in Atomic Physics


Book Description

The last few years have seen some remarkable advances in the understanding of atomic phenomena. It is now possible to isolate atomic systems in traps, measure in coincidence the fragments of collision processes, routinely produce, and study multicharged ions. One can look at bulk matter in such a way that the fundamental atomic character is clearly evident and work has begun to tease out the properties of anti matter. The papers in this book reflect many aspects of modem Atomic Physics. They correspond to the invited talks at a conference dedicated to the study of "New Directions in Atomic Physics," which took place in Magdalene College, Cambridge in July of 1998. The meeting was designed as a way of taking stock of what has been achieved and, it was hoped, as a means of stimulating new research in new areas, along new lines. Consequently, an effort was made to touch on as many directions as we could in the four days of the meeting. We included some talks which overviewed whole subfields, as well as quite a large number of research contributions. There is a unity to Physics and we tried to avoid any artificial division between theory and experiment. We had roughly the same number of talks from those who are primarily concerned with making measurements, and from those who spend their lives trying to develop the theory to describe the experiments.




Bose-Einstein Condensates and Atom Lasers


Book Description

Proceedings of the International School of Quantum Electronics 27th course on Bose Einstein Condensates and Atom Lasers, October 19-24, 1999, Erice, Italy. Since the experimental demonstration of Bose Einstein Condensation in dilute atomic gases there has been an explosion of interest in the properties of this novel macroscopic quantum system. The book covers the methods used to produce these new samples of coherent atoms, their manipulation and the study of their properties. Emphasis is given to the anticipated development of new types of sources, which more and more resemble traditional types of lasers. Because of recent new applications and increasing demand for lasers, sensors and associated instrumentation, the chapters also cover current developments in the basic techniques, materials and applications in the field of the generation of coherent atoms.




Physics and Astrophysics of Neutrinos


Book Description

Observations of neutrinos being emitted by the supernova SN1987A, star neutrinos, and atmospheric neutrinos have provided new insights into astronomy, as well as new unresolved phenomena such as the solar neutrino problem, spurring investigative studies among particle physicists and astrophysicists. One of the most important features of this book is its enumeration of a number of basic properties of neutrinos and their relationship to Grand Unified Theories, focusing on the origin of the neutrino's mass and the generation mixing of neutrinos. All the kamiokande results, detector performances, and complete references are included.