Recent Advances in Differential Equations and Applications


Book Description

This work gathers a selection of outstanding papers presented at the 25th Conference on Differential Equations and Applications / 15th Conference on Applied Mathematics, held in Cartagena, Spain, in June 2017. It supports further research into both ordinary and partial differential equations, numerical analysis, dynamical systems, control and optimization, trending topics in numerical linear algebra, and the applications of mathematics to industry. The book includes 14 peer-reviewed contributions and mainly addresses researchers interested in the applications of mathematics, especially in science and engineering. It will also greatly benefit PhD students in applied mathematics, engineering and physics.




Recent Advances in Differential Equations and Control Theory


Book Description

This book collects the latest results and new trends in the application of mathematics to some problems in control theory, numerical simulation and differential equations. The work comprises the main results presented at a thematic minisymposium, part of the 9th International Congress on Industrial and Applied Mathematics (ICIAM 2019), held in Valencia, Spain, from 15 to 18 July 2019. The topics covered in the 6 peer-review contributions involve applications of numerical methods to real problems in oceanography and naval engineering, as well as relevant results on switching control techniques, which can have multiple applications in industrial complexes, electromechanical machines, biological systems, etc. Problems in control theory, as in most engineering problems, are modeled by differential equations, for which standard solving procedures may be insufficient. The book also includes recent geometric and analytical methods for the search of exact solutions for differential equations, which serve as essential tools for analyzing problems in many scientific disciplines.




Recent Advances in Differential Equations and its Applications (DEAPP–2017)


Book Description

Differential Equations serve as mathematical models for virtually any natural or physical phenomena in science and technology and has applications even in diverse fields such as economics, medicine, ecology, etc. The seminar was organized to throw light on the recent advances in the applications of differential equations and to provide a platform for sharing the knowledge with experts in the field with young students and researchers. The Researchers and educators in the field of differential equations were invited to attend and share their rich experience. As for everything else. so for a mathematical theory. beauty can be perceived but not explained.




Recent Advances in Differential Equations


Book Description

The First Pan-China Conference on Differential Equations was held in Kunming, China in June of 1997. Researchers from around the world attended-including representatives from the US, Canada, and the Netherlands-but the majority of the speakers hailed from China and Hong Kong. This volume contains the plenary lectures and invited talks presented at that conference, and provides an excellent view of the research on differential equations being carried out in China. Most of the subjects addressed arose from actual applications and cover ordinary and partial differential equations. Topics include:




Recent Advances in Differential Equations


Book Description

Recent Advances in Differential Equations contains the proceedings of a meeting held at the International Center for Theoretical Physics in Trieste, Italy, on August 24-28, 1978 under the auspices of the U.S. Army Research Office. The papers review the status of research in the field of differential equations (ordinary, partial, and functional). Both theoretical aspects (differential operators, periodic solutions, stability and bifurcation, asymptotic behavior of solutions, etc.) and problems arising from applications (reaction-diffusion equations, control problems, heat flow, etc.) are discussed. Comprised of 33 chapters, this book first examines non-cooperative trajectories of n-person dynamical games and stable non-cooperative equilibria, followed by a discussion on the determination and application of Vekua resolvents. The reader is then introduced to generalized Hopf bifurcation; some Cauchy problems arising in computational methods; and boundary value problems for pairs of ordinary differential operators. Subsequent chapters focus on degenerate evolution equations and singular optimal control; stability of neutral functional differential equations; local exact controllability of nonlinear evolution equations; and turbulence and higher order bifurcations. This monograph will be of interest to students and practitioners in the field of mathematics.




New Difference Schemes for Partial Differential Equations


Book Description

This book explores new difference schemes for approximating the solutions of regular and singular perturbation boundary-value problems for PDEs. The construction is based on the exact difference scheme and Taylor's decomposition on the two or three points, which permits investigation of differential equations with variable coefficients and regular and singular perturbation boundary value problems.




Finite Difference Methods for Ordinary and Partial Differential Equations


Book Description

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.




Evolution Equations, Feshbach Resonances, Singular Hodge Theory


Book Description

Evolution equations describe many processes in science and engineering, and they form a central topic in mathematics. The first three contributions to this volume address parabolic evolutionary problems: The opening paper treats asymptotic solutions to singular parabolic problems with distribution and hyperfunction data. The theory of the asymptotic Laplace transform is developed in the second paper and is applied to semigroups generated by operators with large growth of the resolvent. An article follows on solutions by local operator methods of time-dependent singular problems in non-cylindrical domains. The next contribution addresses spectral properties of systems of pseudodifferential operators when the characteristic variety has a conical intersection. Bohr-Sommerfeld quantization rules and first order exponential asymptotics of the resonance widths are established under various semiclassical regimes. In the following article, the limiting absorption principle is proven for certain self-adjoint operators. Applications include Hamiltonians with magnetic fields, Dirac Hamiltonians, and the propagation of waves in inhomogeneous media. The final topic develops Hodge theory on manifolds with edges; its authors introduce a concept of elliptic complexes, prove a Hodge decomposition theorem, and study the asymptotics of harmonic forms.




Partial Differential Equations


Book Description

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.




Differential Equations, Bifurcations, and Chaos in Economics


Book Description

Although the application of differential equations to economics is a vast and vibrant area, the subject has not been systematically studied; it is often treated as a subsidiary part of mathematical economics textbooks. This book aims to fill that void by providing a unique blend of the theory of differential equations and their exciting applications to dynamic economics. Containing not just a comprehensive introduction to the applications of the theory of linear (and linearized) differential equations to economic analysis, the book also studies nonlinear dynamical systems, which have only been widely applied to economic analysis in recent years. It provides comprehensive coverage of the most important concepts and theorems in the theory of differential equations in a way that can be understood by any reader who has a basic knowledge of calculus and linear algebra. In addition to traditional applications of the theory to economic dynamics, the book includes many recent developments in different fields of economics.