Advances in Polymer Nanocomposites


Book Description

The addition of nanoparticles to polymer composites has led to a new generation of composite materials with enhanced and novel properties. Advances in polymer nanocomposites reviews the main types of polymer nanocomposites and their applications.Part one reviews types of polymer nanocomposites according to fillers. Processing of carbon nanotube-based nanocomposites, layered double hydroxides (LDHs) and cellulose nanoparticles as functional fillers and reinforcement are discussed, alongside calcium carbonate and metal-polymer nanocomposites. Part two focuses on types of polymer nanocomposites according to matrix polymer, with polyolefin-based, (PVC)-based, nylon-based, (PET)-based and thermoplastic polyurethane (TPU)-based polymer nanocomposites discussed. Soft, gel and biodegradable polymer nanocomposites are also considered. Part three goes on to investigate key applications, including fuel cells, aerospace applications, optical applications, coatings and flame-retardant polymer nanocomposites.With its distinguished editor and international team of expert contributors, Advances in polymer nanocomposites is an essential guide for professionals and academics involved in all aspects of the design, development and application of polymer nanocomposites. - Reviews the main types of polymer nanocomposites and their applications - Discusses processing of carbon nanotube-based nanocomposites, layered double hydroxides (LDHs) and cellulose nanoparticles as functional fillers and reinforcement - Discusses polyolefin-based, (PVC)-based, nylon-based, (PET)-based and thermoplastic polyurethane (TPU)-based polymer nanocomposites




Recent Advances in Polymer Nanocomposites: Synthesis and Characterisation


Book Description

This book examines the current state of the art, new challenges, opportunities, and applications in the area of polymer nanocomposites. Special attention has been paid to the processing-morphology-structure-property relationship of the system. Various unresolved issues and new challenges in the field of polymer nanocompostes are discussed. The infl




Nanotechnology in Textiles


Book Description

In recent times, polymer nanocomposites have attracted a great deal of scientific interest due to their unique advantages over conventional plastic materials, such as superior strength, modulus, thermal stability, thermal and electrical conductivity, and gas barrier. They are finding real and fast-growing applications in wide-ranging fields such as automotive, aerospace, electronics, packaging, and sports. This book focuses on the development of polymer nanocomposites as an advanced material for textile applications, such as fibers, coatings, and nanofibers. It compiles and details cutting-edge research in the science and nanotechnology of textiles with special reference to polymer nanocomposites in the form of invited chapters from scientists and subject experts from various institutes from all over the world. They include authors who are actively involved in the research and development of polymer nanocomposites with a wide range of functions—including antimicrobial, flame-retardant, gas barrier, shape memory, sensor, and energy-scavenging—as well as medical applications, such as tissue engineering and wound dressings, to create a new range of smart and intelligent textiles. Edited by Mangala Joshi, a prominent nanotechnology researcher at the premier Indian Institute of Technology, Delhi, India, this book will appeal to anyone involved in nanotechnology, nanocomposites, advanced materials, polymers, fibers and textiles, and technical textiles.




Smart Polymer Nanocomposites


Book Description

Smart Polymer Nanocomposites: Biomedical and Environmental Applications presents the latest information on smart polymers and their promising application in various fields, including their role in delivery systems for drugs, tissue engineering scaffolds, cell culture sports, bioseparation, and sensors or actuator systems. - Features detailed information on the preparation, characterization and applications of smart functional polymer composites - Covers a broad range of applications in both the biomedical and environmental engineering fields - Chapters are written by authors with diverse background expertise from the faculties of chemistry, engineering and the manufacturing industry




Spectroscopy of Polymer Nanocomposites


Book Description

Spectroscopy of Polymer Nanocomposites covers all aspects of the spectroscopic characterization of polymer nanocomposites. More than 25 spectroscopy characterization techniques – almost all used in materials science – are treated in the book, with discussion of their potentialities and limitations. By comparing the techniques with each other and presenting the techniques together with their specific application areas, the book provides scientists and engineers the information needed for solving specific problems and choosing the right technique for analyzing the material structure. From this, the dispersion structure of fillers, property relations and filler-polymer interactions can be determined, and, ultimately, the right materials can be chosen for the right applications. Besides the techniques and structure-property relations, aspects covered include: phase segregation of filler particles, filler agglomeration and deagglomeration, filler dispersion, filler-polymer interactions, surfaces and interfaces. The book also examines recent developments, as well as unresolved issues and new challenges, in the characterization of surfaces and interfaces in polymer nanocomposites. This handpicked selection of topics, and the combined expertise of contributors from industry, academia, government and private research organizations across the globe, make this survey an outstanding reference source for anyone involved in the field of polymer nanocomposites in academia or industry. - Provides comprehensive coverage of spectroscopy techniques for analyzing polymer nanocomposites - Enables researchers and engineers to choose the right technique and make better materials decisions in research and a range of industries - Presents the fundamentals, information on structure-property relations, and all other aspects relevant for understanding spectroscopic analyses of nanoreinforced polymers and their applications




Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications


Book Description

Polymer-Based Advanced Functional Composites for Optoelectronic and Energy Applications explains how polymer-based smart composites and nanocomposites can be prepared and utilized for novel optical, sensor and energy-related applications. The book begins with an introductory section on the fundamentals of smart polymer composites, including structure-property relationships and conjugated polymers. Other sections examine optical applications, including the use of polymer-based smart composites for luminescent solar concentrators, electro-chromic applications, light conversion applications, ultraviolet shielding applications, LED encapsulation applications, sensor applications, including gas-sensing, strain sensing, robotics and tactile sensors, with final sections covering energy-related applications, including energy harvesting, conversion, storage, vibrational energy harvesting, and more. This is an essential guide for researchers, scientists and advanced students in smart polymers and materials, polymer science, composites, nanocomposites, electronics and materials science. It is also a valuable book for scientists, R&D professionals and engineers working with products that could utilize smart polymer composites. - Provides thorough coverage of the latest pioneering research in the field of polymer-based smart composites - Offers an applications-oriented approach, enabling the reader to understand state-of-the-art optical, sensor and energy applications - Includes an in-depth introductory section, covering important aspects such as structure-property relationships and the role of conjugated polymers




Polymer Nanocomposites for Advanced Engineering and Military Applications


Book Description

The field of polymer nanocomposites has become essential for engineering and military industries over the last few decades as it applies to computing, sensors, biomedical microelectronics, hard coating, and many other domains. Due to their outstanding mechanical and thermal features, polymer nanocomposite materials have recently been developed and now have a wide range of applications. Polymer Nanocomposites for Advanced Engineering and Military Applications provides emerging research on recent advances in the fabrication methods, properties, and applications of various nano-fillers including surface-modification methods and chemical functionalization. Featuring coverage on a broad range of topics such as barrier properties, biomedical microelectronics, and matrix processing, this book is ideally designed for engineers, industrialists, chemists, government officials, military professionals, practitioners, academicians, researchers, and students.




Clay-Polymer Nanocomposites


Book Description

Clay–Polymer Nanocomposites is a complete summary of the existing knowledge on this topic, from the basic concepts of synthesis and design to their applications in timely topics such as high-performance composites, environment, and energy issues. This book covers many aspects of synthesis such as in- situ polymerization within the interlamellar spacing of the clays or by reaction of pristine or pre-modified clays with reactive polymers and prepolymers. Indeed, nanocomposites can be prepared at industrial scale by melt mixing. Regardless the synthesis method, much is said in this book about the importance of theclay pre-modification step, which is demonstrated to be effective, on many occasions, in obtaining exfoliated nanocomposites. Clay–Polymer Nanocomposites reports the background to numerous characterization methods including solid state NMR, neutron scattering, diffraction and vibrational techniques as well as surface analytical methods, namely XPS, inverse gas chromatography and nitrogen adsorption to probe surface composition, wetting and textural/structural properties. Although not described in dedicated chapters, numerous X-ray diffraction patterns of clay–polymer nanocomposites and reference materials are displayed to account for the effects of intercalation and exfoliations of layered aluminosilicates. Finally, multiscale molecular simulation protocols are presenting for predicting morphologies and properties of nanostructured polymer systems with industrial relevance. As far as applications are concerned, Clay–Polymer Nanocomposites examines structural composites such as clay–epoxy and clay–biopolymers, the use of clay–polymer nanocomposites as reactive nanocomposite fillers, catalytic clay-(conductive) polymers and similar nanocomposites for the uptake of hazardous compounds or for controlled drug release, antibacterial applications, energy storage, and more. - The most comprehensive coverage of the state of the art in clay–polymer nanocomposites, from synthesis and design to opportunities and applications - Covers the various methods of characterization of clay–polymer nanocomposites - including spectroscopy, thermal analyses, and X-ray diffraction - Includes a discussion of a range of application areas, including biomedicine, energy storage, biofouling resistance, and more




Biodegradable Polymeric Nanocomposites


Book Description

How Can Polymers Constructed From Living Organisms Help Eliminate the Disposal Issue? A unique category of materials called biodegradable polymers could help remedy a growing environmental concern. Biodegradable Polymeric Nanocomposites: Advances in Biomedical Applications considers the potential of biodegradable polymers for use in biomedical appl




Recent Advances in Elastomeric Nanocomposites


Book Description

‘Recent Advances in Elastomeric Nanocomposites’ reviews the recent progresses in the synthesis, processing as well as applications of elastomeric nanocomposites. Elastomers are a very important class of polymer materials and the generation of their nanocomposites by the incorporation of nano-filler has led to significant enhancement of their properties and, hence, expansion of their application potential. Most of the studies related with these materials are present in the form of research papers. Here, the authors present a comprehensive text covering the whole of the subject. The book is tailored more from the applications point of view, but also provide enough introductory material for research scholars new to this field.