Book Description
"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.
Author : Zhang, Ming
Publisher : IGI Global
Page : 660 pages
File Size : 50,46 MB
Release : 2010-02-28
Category : Computers
ISBN : 1615207120
"This book introduces and explains Higher Order Neural Networks (HONNs) to people working in the fields of computer science and computer engineering, and how to use HONNS in these areas"--Provided by publisher.
Author : Ali Sadollah
Publisher :
Page : pages
File Size : 24,17 MB
Release : 2020
Category : Neural networks (Computer science)
ISBN : 9781789854206
Author : Ali Sadollah
Publisher : BoD – Books on Demand
Page : 152 pages
File Size : 43,39 MB
Release : 2020-03-04
Category : Computers
ISBN : 1789854199
Artificial intelligence (AI) is everywhere and it's here to stay. Most aspects of our lives are now touched by artificial intelligence in one way or another, from deciding what books or flights to buy online to whether our job applications are successful, whether we receive a bank loan, and even what treatment we receive for cancer. Artificial Neural Networks (ANNs) as a part of AI maintains the capacity to solve problems such as regression and classification with high levels of accuracy. This book aims to discuss the usage of ANNs for optimal solving of time series applications and clustering. Bounding of optimization methods particularly metaheuristics considered as global optimizers with ANNs make a strong and reliable prediction tool for handling real-life application. This book also demonstrates how different fields of studies utilize ANNs proving its wide reach and relevance.
Author : Management Association, Information Resources
Publisher : IGI Global
Page : 1575 pages
File Size : 29,89 MB
Release : 2021-07-16
Category : Computers
ISBN : 1668424096
Artificial neural networks (ANNs) present many benefits in analyzing complex data in a proficient manner. As an effective and efficient problem-solving method, ANNs are incredibly useful in many different fields. From education to medicine and banking to engineering, artificial neural networks are a growing phenomenon as more realize the plethora of uses and benefits they provide. Due to their complexity, it is vital for researchers to understand ANN capabilities in various fields. The Research Anthology on Artificial Neural Network Applications covers critical topics related to artificial neural networks and their multitude of applications in a number of diverse areas including medicine, finance, operations research, business, social media, security, and more. Covering everything from the applications and uses of artificial neural networks to deep learning and non-linear problems, this book is ideal for computer scientists, IT specialists, data scientists, technologists, business owners, engineers, government agencies, researchers, academicians, and students, as well as anyone who is interested in learning more about how artificial neural networks can be used across a wide range of fields.
Author : Siddhartha Bhattacharyya
Publisher : Academic Press
Page : 420 pages
File Size : 50,75 MB
Release : 2021-07-31
Category : Computers
ISBN : 0323851797
The field of computational intelligence has grown tremendously over that past five years, thanks to evolving soft computing and artificial intelligent methodologies, tools and techniques for envisaging the essence of intelligence embedded in real life observations. Consequently, scientists have been able to explain and understand real life processes and practices which previously often remain unexplored by virtue of their underlying imprecision, uncertainties and redundancies, and the unavailability of appropriate methods for describing the incompleteness and vagueness of information represented. With the advent of the field of computational intelligence, researchers are now able to explore and unearth the intelligence, otherwise insurmountable, embedded in the systems under consideration. Computational Intelligence is now not limited to only specific computational fields, it has made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design to name a few. Recent Trends in Computational Intelligence Enabled Research: Theoretical Foundations and Applications explores the use of this computational paradigm across a wide range of applied domains which handle meaningful information. Chapters investigate a broad spectrum of the applications of computational intelligence across different platforms and disciplines, expanding our knowledge base of various research initiatives in this direction. This volume aims to bring together researchers, engineers, developers and practitioners from academia and industry working in all major areas and interdisciplinary areas of computational intelligence, communication systems, computer networks, and soft computing. - Provides insights into the theory, algorithms, implementation, and application of computational intelligence techniques - Covers a wide range of applications of deep learning across various domains which are researching the applications of computational intelligence - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques
Author : Subana Shanmuganathan
Publisher : Springer
Page : 468 pages
File Size : 31,4 MB
Release : 2016-02-03
Category : Technology & Engineering
ISBN : 3319284959
This book covers theoretical aspects as well as recent innovative applications of Artificial Neural networks (ANNs) in natural, environmental, biological, social, industrial and automated systems. It presents recent results of ANNs in modelling small, large and complex systems under three categories, namely, 1) Networks, Structure Optimisation, Robustness and Stochasticity 2) Advances in Modelling Biological and Environmental Systems and 3) Advances in Modelling Social and Economic Systems. The book aims at serving undergraduates, postgraduates and researchers in ANN computational modelling.
Author : S. Smys
Publisher : Springer Nature
Page : 877 pages
File Size : 20,84 MB
Release : 2022-03-30
Category : Technology & Engineering
ISBN : 9811695733
This book includes selected papers from the 5th International Conference on Computational Vision and Bio Inspired Computing (ICCVBIC 2021), held in Coimbatore, India, during November 25–26, 2021. This book presents state-of-the-art research innovations in computational vision and bio-inspired techniques. The book reveals the theoretical and practical aspects of bio-inspired computing techniques, like machine learning, sensor-based models, evolutionary optimization and big data modeling and management that make use of effectual computing processes in the bio-inspired systems. It also contributes to the novel research that focuses on developing bio-inspired computing solutions for various domains, such as human–computer interaction, image processing, sensor-based single processing, recommender systems and facial recognition, which play an indispensable part in smart agriculture, smart city, biomedical and business intelligence applications.
Author : Valentina E. Balas
Publisher : Springer Nature
Page : 618 pages
File Size : 37,41 MB
Release : 2019-11-19
Category : Technology & Engineering
ISBN : 3030326446
This book covers all the emerging trends in artificial intelligence (AI) and the Internet of Things (IoT). The Internet of Things is a term that has been introduced in recent years to define devices that are able to connect and transfer data to other devices via the Internet. While IoT and sensors have the ability to harness large volumes of data, AI can learn patterns in the data and quickly extract insights in order to automate tasks for a variety of business benefits. Machine learning, an AI technology, brings the ability to automatically identify patterns and detect anomalies in the data that smart sensors and devices generate, and it can have significant advantages over traditional business intelligence tools for analyzing IoT data, including being able to make operational predictions up to 20 times earlier and with greater accuracy than threshold-based monitoring systems. Further, other AI technologies, such as speech recognition and computer vision can help extract insights from data that used to require human review. The powerful combination of AI and IoT technology is helping to avoid unplanned downtime, increase operating efficiency, enable new products and services, and enhance risk management.
Author : Alma Y Alanis
Publisher : Academic Press
Page : 176 pages
File Size : 26,85 MB
Release : 2019-02-13
Category : Science
ISBN : 0128182474
Artificial Neural Networks for Engineering Applications presents current trends for the solution of complex engineering problems that cannot be solved through conventional methods. The proposed methodologies can be applied to modeling, pattern recognition, classification, forecasting, estimation, and more. Readers will find different methodologies to solve various problems, including complex nonlinear systems, cellular computational networks, waste water treatment, attack detection on cyber-physical systems, control of UAVs, biomechanical and biomedical systems, time series forecasting, biofuels, and more. Besides the real-time implementations, the book contains all the theory required to use the proposed methodologies for different applications.
Author : Patel, Hiral Ashil
Publisher : IGI Global
Page : 315 pages
File Size : 16,8 MB
Release : 2020-09-25
Category : Computers
ISBN : 1799840433
Processing information and analyzing data efficiently and effectively is crucial for any company that wishes to stay competitive in its respective market. Nonlinear data presents new challenges to organizations, however, due to its complexity and unpredictability. The only technology that can properly handle this form of data is artificial neural networks. These modeling systems present a high level of benefits in analyzing complex data in a proficient manner, yet considerable research on the specific applications of these intelligent components is significantly deficient. Applications of Artificial Neural Networks for Nonlinear Data is a collection of innovative research on the contemporary nature of artificial neural networks and their specific implementations within data analysis. While highlighting topics including propagation functions, optimization techniques, and learning methodologies, this book is ideally designed for researchers, statisticians, academicians, developers, scientists, practitioners, students, and educators seeking current research on the use of artificial neural networks in diagnosing and solving nonparametric problems.