Recovery and Recycling of Valuable Metals


Book Description

Metals have always played a significant role in human life, and the current global growth and prosperity are directly dependent on these materials. With the rapidly growing global demand for metals, their extraction from natural minerals (as their primary sources) has been enhanced, causing a significant reduction in the grade and quality of the ores in ore deposits and leading to the production of huge amounts of waste, which requires management. In light of this, new proposals to develop more advanced metal recovery technologies from minerals are needed. Additionally, the huge quantity of waste generated through all steps of metal production is known to be a source of environmental pollution, while its valorization can create value via recycling metals or even though use in the production of other valuable materials. Such waste valorization is also in line with the United Nations' Sustainable Development Goals (SDGs), as well as the implementation of the Paris Agreement. In this regard, the recycling of end-user products in order to reproduce valuable metals can also create significant value and reduce mining activities, and thus, their harmful consequences worldwide. Therefore, research and development in the state-of-the-art technologies for the recovery and recycling of metals are absolutely necessary. The aim of this Special Issue was to collect a range of articles on different aspects of valuable metal recovery and recycling from primary and secondary sources, as well as to decipher all new methods, processes, and knowledge in valuable metal production. We hope that this open access Special Issue will provide a great opportunity to demonstrate the work of researchers working in this area all around the world and help to provide new ideas for researchers who are working in the areas of hydrometallurgy, mineral processing, and waste recycling and valorization.




WEEE Recycling


Book Description

WEEE Recycling: Research, Development, and Policies covers policies, research, development, and challenges in recycling of waste electrical and electronic equipment (WEEE). The book introduces WEEE management and then covers the environmental, economic, and societal applications of e-waste recycling, focusing on the technical challenges to designing efficient and sustainable recycling processes—including physical separation, pyrometallurgical, and hydrometallurgical processes. The development of processes for recovering strategic and critical metals from urban mining is a priority for many countries, especially those having few available ores mining. - Describes the two metallurgical processes—hydro- and pyro-metallurgy—and their application in recycling of metals - Provides a life cycle analysis in the WEEE recycling of metals - Outlines how to determine economic parameters in the recycling of waste metals - Discusses the socio economic and environmental implication of metal recycling




Advances in Molten Slags, Fluxes, and Salts


Book Description

This collection focuses on ferrous and non-ferrous metallurgy where ionic melts, slags, fluxes, or salts play important roles in industrial growth and economy worldwide. Technical topics included are: thermodynamic properties and phase diagrams and kinetics of slags, fluxes, and salts; physical properties of slags, fluxes, and salts; structural studies of slags; interfacial and process phenomena involving foaming, bubble formation, and drainage; slag recycling, refractory erosion/corrosion, and freeze linings; and recycling and utilization of metallurgical slags and models and their applications in process improvement and optimization. These topics are of interest to not only traditional ferrous and non-ferrous metal industrial processes but also new and upcoming technologies.




Recycling of Lithium-Ion Batteries


Book Description

This book addresses recycling technologies for many of the valuable and scarce materials from spent lithium-ion batteries. A successful transition to electric mobility will result in large volumes of these. The book discusses engineering issues in the entire process chain from disassembly over mechanical conditioning to chemical treatment. A framework for environmental and economic evaluation is presented and recommendations for researchers as well as for potential operators are derived.




Rare-Earth Metal Recovery for Green Technologies


Book Description

This book examines the development, use, extraction, and recovery of rare earth metals. Rare earth elements (REEs) occupy a key role in daily life in industrial applications. They are one of the critical elements for energy and sustainable growth. REEs are utilized in many modern electrical and electronic devices such as smart phones, computers, LED lights etc. Recovery of the REEs from secondary resources represents a way to meet the growing demand for electronic devices. Because of their rarity, utility, and importance, the recovery, utilization and recycling of rare earth metals is of utmost importance. This book presents both current methods of processing rare earths from primary and secondary sources and new, green routes for their isolation and purification. The book also addresses their utilization, re-use, reduction, and recycling policies that exist globally. Applications in metallurgy, magnets, ceramics, electronics, and chemical, optical, and nuclear technologies are discussed.




Resource Recovery and Recycling from Metallurgical Wastes


Book Description

Resource recovery and recycling from millions of tons of wastes produced from industrial activities is a continuing challenge for environmental engineers and researchers. Demand for conservation of resources, reduction in the quantity of waste and sustainable development with environmental control has been growing in every part of the world. Resource Recovery and Recycling from Metallurgical Wastes brings together the currently used techniques of waste processing and recycling, their applications with practical examples and economic potentials of the processes. Emphasis is on resource recovery by appropriate treatment and techniques. Material on the subject is scatterend in waste management and environmental related journals, conference volumes and government departmental technical reports. This work serves as a source book of information and as an educational technical reference for practicing scientists and engineers, as well as for students. - Describes the currently used and potential techniques for the recovery of valuable resources from mineral and metallurgical wastes - Discusses the applications to specific kinds of wastes with examples from current practices, as well as eht economics of the processes - Presents recent and emerging technologies of potentials in metal recycling and by-product utilization




Extractive Metallurgy of Nickel, Cobalt and Platinum Group Metals


Book Description

This book describes and explains the methods by which three related ores and recyclables are made into high purity metals and chemicals, for materials processing. It focuses on present day processes and future developments rather than historical processes. Nickel, cobalt and platinum group metals are key elements for materials processing. They occur together in one book because they (i) map together on the periodic table (ii) occur together in many ores and (iii) are natural partners for further materials processing and materials manufacturing. They all are, for example, important catalysts – with platinum group metals being especially important for reducing car and truck emissions. Stainless steels and CoNiFe airplane engine super alloys are examples of practical usage. The product emphasises a sequential, building-block approach to the subject gained through the author's previous writings (particularly Extractive Metallurgy of Copper in four editions) and extensive experience. Due to the multiple metals involved and because each metal originates in several types of ore – e.g. tropical ores and arctic ores this necessitates a multi-contributor work drawing from multiple networks and both engineering and science. - Synthesizes detailed review of the fundamental chemistry and physics of extractive metallurgy with practical lessons from industrial consultancies at the leading international plants - Discusses Nickel, Cobalt and Platinum Group Metals for the first time in one book - Reviews extraction of multiple metals from the same tropical or arctic ore - Industrial, international and multidisciplinary focus on current standards of production supports best practice use of industrial resources




Industrial Inorganic Chemistry


Book Description

This book provides an up-to-date survey of modern industrial inorganic chemistry in a clear and concise manner. Production processes are described in close detail, aspects such as the disposition of raw materials and energy consumption, the economic significance of the product and technical applications, as well as ecological problems, being discussed. From reviews of the previous edition: '... Overall this is an extremely useful, authoritative reference book dealing with a topic in which it is often difficult to obtain up-to-date information. ...' Chemistry and Industry 'One of few texts available that concisely describes the current state of industrial inorganic chemistry. ...' The New York Public Library '... and as for modern uses of inorganic chemistry, I'd recommend this book as a welcome addition to any professional library...' Chemtech 'This book fills an important niche in its sector. Industrial scientists and engineers, academics, and students can be recommended to turn to it with reasonable confidence that the most important areas are described. ...' Endeavour '... it fills a currently existing gap in the market.' Journal of Chemical Technology and Biotechnology




Element Recovery and Sustainability


Book Description

Increased consumption of electronic equipment has brought with it a greater demand for rare earth elements and metals. Adding to this is the growth in low carbon technologies such as hybrid fuel vehicles. It is predicted that the global supply of rare earth elements could soon be exhausted. A sustainable approach to the use and recovery of rare earth elements is needed, and this book addresses the political, economic and research agendas concerning them. The problem is discussed thoroughly and a multi-disciplinary team of authors from the chemistry, engineering and biotechnology sectors presents a range of solutions, from traditional metallurgical methods to innovations in biotechnology. Case studies add value to the theory presented, and indirect targets for recovery, such as municipal waste and combustion ash are considered. This book will be essential reading for researchers in academia and industry tackling sustainable element recovery, as well as postgraduate students in chemistry, engineering and biotechnology. Environmental scientists and policy makers will also benefit from reading about potential benefits of recovery from waste streams.




Recycling of Spent Lithium-Ion Batteries


Book Description

​This book presents a state-of-the-art review of recent advances in the recycling of spent lithium-ion batteries. The topics covered include: introduction to the structure of lithium-ion batteries; development of battery-powered electric vehicles; potential environmental impact of spent lithium-ion batteries; pretreatment of spent lithium-ion batteries for recycling processing; pyrometallurgical processing for recycling spent lithium-ion batteries; hydrometallurgical processing for recycling spent lithium-ion batteries; direct processing for recycling spent lithium-ion batteries; high value-added products from recycling of spent lithium-ion batteries; and effects of recycling of spent lithium-ion batteries on environmental burdens. The book provides an essential reference resource for professors, researchers, and policymakers in academia, industry, and government around the globe.




Recent Books