Refinements to the Methods for Developing Spacecraft Exposure Guidelines


Book Description

Human spaceflight is inherently risky, with numerous potential hazards posed at each phase of a mission. Potential health risks during spaceflights include short-term health consequences from being in microgravity, as well as long-term health consequences that arise, or continue, months or years after a flight. Additional health considerations are risks posed by exposure to environmental contaminants onboard spacecraft. Because the International Space Station and spacecraft are closed environments that require recirculation of air and water supplies, some contamination of the air and water will occur. Even with onboard air and water purification systems, chemicals will accumulate in the air and water as they recirculate or are recycled onboard. Therefore, it is necessary for the National Aeronautics and Space Administration (NASA) to identify hazardous contaminants and determine exposure levels that are not expected to pose a health risk to astronauts. NASA uses spacecraft maximum allowance concentrations (SMACs) and spacecraft water exposure guidelines (SWEGs) to provide guidance on acceptable exposures to air and water contaminants during normal operations and emergency situations. Refinements to the Methods for Developing Spacecraft Exposure Guidelines updates the methods for establishing SMACs and SWEGs and assists NASA with identifying chemicals that need updated SMACs or SWEGs and new chemicals for which these guidelines should be developed.




Refinements to the Methods for Developing Spacecraft Exposure Guidelines


Book Description

Human spaceflight is inherently risky, with numerous potential hazards posed at each phase of a mission. Potential health risks during spaceflights include short-term health consequences from being in microgravity, as well as long-term health consequences that arise, or continue, months or years after a flight. Additional health considerations are risks posed by exposure to environmental contaminants onboard spacecraft. Because the International Space Station and spacecraft are closed environments that require recirculation of air and water supplies, some contamination of the air and water will occur. Even with onboard air and water purification systems, chemicals will accumulate in the air and water as they recirculate or are recycled onboard. Therefore, it is necessary for the National Aeronautics and Space Administration (NASA) to identify hazardous contaminants and determine exposure levels that are not expected to pose a health risk to astronauts. NASA uses spacecraft maximum allowance concentrations (SMACs) and spacecraft water exposure guidelines (SWEGs) to provide guidance on acceptable exposures to air and water contaminants during normal operations and emergency situations. Refinements to the Methods for Developing Spacecraft Exposure Guidelines updates the methods for establishing SMACs and SWEGs and assists NASA with identifying chemicals that need updated SMACs or SWEGs and new chemicals for which these guidelines should be developed.




Review of DOD's Approach to Deriving an Occupational Exposure Level for Trichloroethylene


Book Description

Trichloroethylene (TCE) is a solvent that is used as a degreasing agent, a chemical intermediate in refrigerant manufacture, and a component of spot removers and adhesives. It is produced in mass quantities but creates dangerous vapors and is an environmental contaminant at many industrial and government facilities, including facilities run by the U.S. Department of Defense (DoD). It is important to determine the safe occupational exposure level (OEL) for the solvent in order to protect the health of workers who are exposed to its vapors. However, there are concerns that the current occupational standards insufficiently protect workers from these health threats. Review of DOD's Approach to Deriving an Occupational Exposure Level for Trichloroethylene makes recommendations to improve the DoD's approach to developing an OEL for TCE, strengthen transparency of the process, and improve confidence in the final OEL value. This report reviews the DoD's approach using a literature review, evidence synthesis based on weight of evidence [WOE], point-of-departure derivation, physiologically based pharmacokinetic modeling, extrapolation tools, and explores other elements of the process of deriving an OEL for TCE. It examines scientific approaches to developing exposure values and cancer risk levels, defining the scope of the problem, and improving hazard identification.




Methods for Developing Spacecraft Water Exposure Guidelines


Book Description

The National Aeronautics and Space Administration (NASA) maintains an active interest in the environmental conditions associated with living and working in spacecraft and identifying hazards that might adversely affect the health and well-being of crew members. Despite major engineering advances in controlling the spacecraft environment, some water and air contamination appears to be inevitable. Several hundred chemical species are likely to be found in the closed environment of the spacecraft, and as the frequency, complexity, and duration of human space flight increase, identifying and understanding significant health hazards will become more complicated and more critical for the success of the missions. NASA asked the National Research Council (NRC) Committee on Toxicology to develop guidelines, similar to those developed by the NRC in 1992 for airborne substances, for examining the likelihood of adverse effects from water contaminants on the health and performance of spacecraft crews. In this report, the Subcommittee on Spacecraft Water Exposure Guidelines (SWEGs) examines what is known about water contaminants in spacecraft, the adequacy of current risk assessment methods, and the toxicologic issues of greatest concern.




Participatory Technology Development: A Technique for Indigenous Technical Knowledge Refinement


Book Description

The book Participatory Technology Development: A Technique for Indigenous Technical Knowledge Refinement comprehensively presenting in depth about Participatory Technology Development, Experimentation, Indigenous wisdom of the farming community, perception aspects of farmers, scientists and extension personnel towards PTD and Technology transfer process. This will enable the different category of users namely the researchers, field extension workers, NGO personnel, student researchers etc, to understand the latest advancement in PTD and the ways and means of solving field issues and follow those ideas in their activities. Thus the book will certainly satisfy those readers who intensely use it.
















OECD Series on Testing and Assessment Report of the Workshop on a Framework for the Development and Use Of Integrated Approaches to Testing and Assessment


Book Description

This document is a report of the Workshop on a framework for the development and use of integrated approaches to testing and assessment which was held on 17-19 November 2014 in Crystal City VA, USA. This framework should provide guiding principles, and technical guidance on how results from ...