Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants


Book Description

The NATO Advanced Research Workshop (ARW) on "Regulation of Enzymatic Systems Detoxifying Xenobiotics in Plants" intended to provide a forum to scientists from academia, industry, and govemment for discussing and critically assessing recent advances in the field of xenobiotic metabolism in plants and for identifying new directions for future research. Plants function in a chemical environment made up of nutrients and xenobiotics. Xenobiotics (foreign chemicals) are natural or synthetic compounds that can not be utilized by plants for energy-yielding metabolism. Plants may be exposed to xenobiotics either deliberately, due to their use as pesticides or accidentally, from industrial, agricultural, and other uses. Plants, like most other organisms, evolved a remarkable battery or metabolic reactions to defend themselves against the potentially toxic effects of xenobiotics. The main enzymatic reactions utilized by plants for xenobiotic detoxification include oxidation, reduction, hydrolysis and conjugation with glutathione, sugars (e.g., glucose), and amino acids. Eventually, xenobiotic conjugates are converted to insoluble bound residues or to secondary conjugates, which are deposited in the vacuole of plant cells.




Plant Toxicology


Book Description

In order to keep track of all the compounds and pathogens affecting plant metabolism and development, you would need to spend all your waking hours combing periodicals and the Internet in dozens of languages, as new toxins via pollutants and migratory or mutant pathogens are being discovered every day. Plant Toxicology, Fourth Edition start




Environmental Challenges and Medicinal Plants


Book Description

Medicinal plants supply the ever-growing needs of humankind for natural chemicals, such as pharmaceuticals, nutraceuticals, agrochemicals, and chemical additives. These plants contain bioactive secondary metabolites, which possess antimalarial, anthelminthic, anti-inflammatory, analgesic, antimicrobial, antiarthritic, antioxidant, antidiabetic, antihypertensive, anticancer, antifungal, antispasmodic, cardioprotective, antithyroid, and antihistaminic properties. Secondary metabolites play a major role in the adaptation of plants to the changing environment and stress condition as they are affected by both biotic and abiotic stress. Humans rely on medicinal plants for various needs since ancient time, and their population still seems enough for fulfilling our demands. However, in the foreseeable future, we will be forced to think about the accessibility of resources for future generations. For these reasons, we must look for alternative sustainable options of resources which can protect these immensely important medicinal plants from various stresses induced by challenging environment. Evolving eco-friendly methodologies and mechanisms to improve these plants’ responses to unfavorable environmental circumstances is important in creating significant tools for better understanding of plant adaptations to various abiotic stresses and sustaining the supply of pharmaceuticals as global climate change intensifies. One of the great challenges in the near future will be the sustainable production of medicinal plants under increasing adverse effects of climate change. A combination of adverse demographic factors and climatological perturbations is expected to impact food and pharmaceutical production globally. Despite the induction of several tolerance mechanisms, medicinal plants often fail to survive under environmental extremes. To ensure their sustainable production under adverse conditions, multidisciplinary approaches are needed, and useful leads are likely to emerge. However, improving plants' performance under restrictive growth conditions requires a deep understanding of the molecular processes that underlie their extraordinary physiological plasticity. This edited volume emphasizes the recent updates about the current research on medicinal plants covering different aspects related to challenges and opportunities in the concerned field. This book is an attempt to bring together global researchers who have been engaged in the area of stress signaling, crosstalk, and mechanisms of medicinal plants. The book will provide a direction towards implementation of programs and practices that will enable sustainable production of medicinal plants resilient to challenging environmental conditions. Moreover, this book will instigate and commence readers to state-of-the-art developments and trends in this field.




Phytoremediation


Book Description

Phytormediation is an exciting new method for controlling and cleaning up hazardous wastes using green plants. This book is the first to compile the state of the science and engineering arts in this rapidly advancing field. Phytormediation: Approaches the subject from the perspectives of biochemistry, genetics, toxicology, and pathway analysis. Is written by two of the premier experts in the field.




Aluminum Stress Adaptation in Plants


Book Description

This book is an overview of our current understanding of aluminium toxicity and tolerance in plants. It covers all relevant aspects from molecular and cellular biology, to genetic approaches, root biology and plant physiology. The contribution of arbuscular mycorrhizal fungi to alleviating aluminium toxicity is also discussed. Over 40% of total agricultural land resources are acidic in nature, with aluminium being the major toxicant. Plant roots are particularly susceptible to aluminium stress, but much of the complex mechanism underlying its toxicity and tolerance is unknown and aluminium stress perception in plants remains poorly understood. The diverse facets of aluminium stress adaptation covered in this book are relevant to plant biology students at all levels, as well researchers and it provides a valuable contribution to our understanding of plant adaptation to the changing environment.




Phytoremediation and Rhizoremediation


Book Description

This volume represents an excellent description of the hottest topics in the field of phyto- and rhizoremediation. The book shows especially the importance of cooperation between plant and microorganisms, there is practically no phytoremediation without rhizoremediation. Newest approaches based on methods of molecular biology and genetic engineering are described, as well as plant science achievements.




Chloroplast Biogenesis


Book Description

Chloroplast is the organelle where the life-giving process photosynthesis takes place; it is the site where plants and algae produce food and oxygen that sustain our life. The story of how it originates from proplastids, and how it ultimately dies is beautifully portrayed by three authorities in the field: Basanti Biswal, Udaya Biswal and M. K. Raval. I consider it a great privilege and honor to have been asked to write this foreword. The book ' Chloroplast biogenesis: from proplastid to gerontoplast' goes much beyond photosynthesis. The character of the book is different from that of many currently available books because it provides an integrated approach to cover the entire life span of the organelle including its senescence and death. The books available are mostly confined to the topics relating to the 'build up' or development of chloroplast during greening. The story of organelle biogenesis without description of the events associated with its regulated dismantling during genetically programmed senescence is incomplete. A large volume of literature is available in this area of chloroplast senescence accumulated during the last 20 years. Although some of the findings in this field have been organized in the form of reviews, the data in the book are generalized and integrated with simple text and graphics. This book describes the structural features of prop las tid and its transformation to fully mature chloroplast, which is subsequently transformed into gerontoplast exhibiting senescence syndrome. The book consists of five major chapters.




Wastewater Reuse and Current Challenges


Book Description

This volume discusses the current challenges related to the reuse of wastewater. It reviews the analytical methodologies for evaluating emerging contaminants and their transformation products, the sensitivity of various bioassays for assessing the biological effects of treated wastewater, and the bioavailability and uptake of organic contaminants during crop irrigation. It describes in detail the physicochemical and microbiological alterations in soil resulting from irrigation with treated urban wastewater, and discusses our current understanding of antibiotic resistance in wastewater treatment plants and in downstream environments. The book also includes an analysis of the effect of wastewater entering drinking water sources and production, and provides updated information on wastewater reuse for irrigation in North Africa. It presents an important integration tool for water recovery, known as water pinch analysis, and finally showcases two other examples of reuse – one in the paper industry and one in landfill management. It is of interest to experts from various fields of research, including analytical and environmental chemistry, toxicology and environmental and sanitary engineering.




Peroxidizing Herbicides


Book Description

Experts in herbicide research and development - chemists and plant physiologists -, have written 15 chapters that review all aspects pertinent to peroxidizing herbicides, compounds of topical interest since extremely low use rates ensure high environmental safety. Topics covered include structure-activity relationships, relevant patent literature, preparative methods, modes of action, greenhouse screening, laboratory assays, plant pigment biochemistry, and enzymology of the decisive target enzyme of this class of herbicides. This comprehensive review will be welcomed as a unique and timely compilation of the current status of peroxidizing herbicide research and development. It will be of interest to professional chemists and biologists in agrochemical companies, universities and agricultural colleges.




Evolution of Metabolic Pathways


Book Description

The past decade has seen major advances in the cloning of genes encoding enzymes of plant secondary metabolism. This has been further enhanced by the recent project on the sequencing of the Arabidopsis genome. These developments provide the molecular genetic basis to address the question of the Evolution of Metabolic Pathways. This volume provides in-depth reviews of our current knowledge on the evolutionary origin of plant secondary metabolites and the enzymes involved in their biosynthesis. The chapters cover five major topics: 1. Role of secondary metabolites in evolution; 2. Evolutionary origins of polyketides and terpenes; 3. Roles of oxidative reactions in the evolution of secondary metabolism; 4. Evolutionary origin of substitution reactions: acylation, glycosylation and methylation; and 5. Biochemistry and molecular biology of brassinosteroids.




Recent Books