Regulatory potential of post-translational modifications in bacteria


Book Description

Post-translational modifications (PTMs) are widely employed by all living organisms to control the enzymatic activity, localization or stability of proteins on a much shorter time scale than the transcriptional control. In eukarya, global analyses consistently reveal that proteins are very extensively phosphorylated, acetylated and ubiquitylated. Glycosylation and methylation are also very common, and myriad other PTMs, most with a proven regulatory potential, are being discovered continuously. The emergent picture is that PTM sites on a single protein are not independent; modification of one residue often affects (positively or negatively) modification of other sites on the same protein. The best example of this complex behavior is the histone “bar-code” with very extensive cross-talk between phosphorylation, acetylation and methylation sites. Traditionally it was believed that large networks of PTMs exist only in complex eukaryal cells, which exploit them for coordination and fine-tuning of various cellular functions. PTMs have also been detected in bacteria, but the early examples focused on a few important regulatory events, based mainly on protein phosphorylation. The global importance (and abundance) of PTMs in bacterial physiology was systematically underestimated. In recent years, global studies have reported large datasets of phosphorylated, acetylated and glycosylated proteins in bacteria. Other modifications of bacterial proteins have been recently described: pupylation, methylation, sirtuin acetylation, lipidation, carboxylation and bacillithiolation. As the landscape of PTMs in bacterial cells is rapidly expanding, primarily due to advances of detection methods in mass spectrometry, our research field is adapting to comprehend the potential impact of these modifications on the cellular physiology. The field of protein phosphorylation, especially of the Ser/Thr/Tyr type, has been profoundly transformed. We have become aware that bacterial kinases phosphorylate many protein substrates and thus constitute regulatory nodes with potential for signal integration. They also engage in cross-talk and eukaryal-like mutual activation cascades. The regulatory potential of protein acetylation and glycosylation in bacteria is also rapidly emerging, and the cross-talk between acetylation and phosphorylation has been documented. This topic deals with the complexity of the PTM landscape in bacteria, and focus in particular on the physiological roles that PTMs play and methods to study them. The topic is associated to the 1st International Conference on Post-Translational Modifications in Bacteria (September 9-10, 2014, Göttingen, Germany).







Analysis of Protein Post-Translational Modifications by Mass Spectrometry


Book Description

Covers all major modifications, including phosphorylation, glycosylation, acetylation, ubiquitination, sulfonation and and glycation Discussion of the chemistry behind each modification, along with key methods and references Contributions from some of the leading researchers in the field A valuable reference source for all laboratories undertaking proteomics, mass spectrometry and post-translational modification research




Novel Cofactors


Book Description

A cofactor is a component part of many enzymes and functions by uniting with another molecule in order to become active. The use of cofactors to supplement the native amino acids of a protein is essential to maintain the chemical capabilities necessary for organisms to survive. This volume focuses on the significant advances of the past decade in identifying and describing new cofactors--either small molecules or those derived posttranslationally.




Protein Conformation


Book Description

How the amino acid sequence of a protein determines its three-dimensional structure is a major problem in biology and chemistry. Leading experts in the fields of NMR spectroscopy, X-ray crystallography, protein engineering and molecular modeling offer provocative insights into current views on the protein folding problem and various aspects for future progress.




Corynebacterium glutamicum


Book Description

Corynebacterium glutamicum was discovered in Japan in 1956 as a natural glutamate producer. Its “microbial factory” qualities, such as its physiological plasticity and robust catalytic functionalities, have since facilitated the development of efficient production processes for amino acids, nucleotides and vitamins. This monograph illustrates how the information gleaned from complete genome sequencing allows the rational engineering of the entire cellular metabolism and how systems biology permits the further optimization of C. glutamicum as a biocatalyst. Aspects of gene regulation, metabolic pathways, sugar uptake, protein secretion, cell division and biorefinery applications highlight the enormous biotechnological and biorefinery potential.




Cellular Mechanics and Biophysics


Book Description

This book focuses on the mechanical properties of cells, discussing the basic concepts and processes in the fields of immunology, biology, and biochemistry. It introduces and explains state-of-the-art biophysical methods and examines the role of mechanical properties in the cell/protein interaction with the connective tissue microenvironment. The book presents a unique perspective on cellular mechanics and biophysics by combining the mechanical, biological, physical, biochemical, medical, and immunological views, highlighting the importance of the mechanical properties of cells and biophysical measurement methods. The book guides readers through the complex and growing field of cellular mechanics and biophysics, connecting and discussing research findings from different fields such as biology, cell biology, immunology, physics, and medicine. Featuring suggestions for further reading throughout and addressing a wide selection of biophysical topics, this book is an indispensable guide for graduate and advanced undergraduate students in the fields of cellular mechanics and biophysics.




Microbial Proteomics: Development in Technologies and Applications


Book Description

This volume brings current knowledge of proteomics technologies and related developments with special reference to diseases caused by microbes. The editor has compiled chapters written by expert academicians which distill the information about useful methods in microbial proteomics for the benefit of readers. Chapters cover several methods used to investigate the microbial proteome and special topics such as antimicrobial drug resistance mechanisms, biomarker developments, post translational modifications. Key Features: -overview of several biochemical methods in proteomics -full-color, high quality images of the most frequent technologies and applications -concise, well organized, and didactic format -updates in basic applied information -bibliographic references -information on proteomics for tuberculosis treatment This reference work is intended for researchers seeking information on laboratory techniques applied in proteomics research and microbiology.




Prokaryotic Metabolism and Physiology


Book Description

Extensive and up-to-date review of key metabolic processes in bacteria and archaea and how metabolism is regulated under various conditions.




Posttranslational Modification of Proteins


Book Description

Covering the major classes of posttranslational modifications, Posttranslational Modification of Proteins is the first comprehensive treatment of this burgeoning area of proteome diversification.