Finite Element Design of Concrete Structures


Book Description

In Finite Element Design of Concrete Structures: practical problems and their solutions the author addresses this blind belief in computer results by offering a useful critique that important details are overlooked due to the flood of information from the output of computer calculations. Indeed, errors in the numerical model may lead in extreme cases to structural failures as the collapse of the so-called Sleipner platform has demonstrated.




Reinforced Concrete


Book Description

This new edition of a highly practical text gives a detailed presentation of the design of common reinforced concrete structures to limit state theory in accordance with BS 8110.




Structural Concrete


Book Description

Emphasizing a conceptual understanding of concrete design and analysis, this revised and updated edition builds the student's understanding by presenting design methods in an easy to understand manner supported with the use of numerous examples and problems.




Reinforced Concrete Structures: Analysis and Design


Book Description

A PRACTICAL GUIDE TO REINFORCED CONCRETE STRUCTURE ANALYSIS AND DESIGN Reinforced Concrete Structures explains the underlying principles of reinforced concrete design and covers the analysis, design, and detailing requirements in the 2008 American Concrete Institute (ACI) Building Code Requirements for Structural Concrete and Commentary and the 2009 International Code Council (ICC) International Building Code (IBC). This authoritative resource discusses reinforced concrete members and provides techniques for sizing the cross section, calculating the required amount of reinforcement, and detailing the reinforcement. Design procedures and flowcharts guide you through code requirements, and worked-out examples demonstrate the proper application of the design provisions. COVERAGE INCLUDES: Mechanics of reinforced concrete Material properties of concrete and reinforcing steel Considerations for analysis and design of reinforced concrete structures Requirements for strength and serviceability Principles of the strength design method Design and detailing requirements for beams, one-way slabs, two-way slabs, columns, walls, and foundations




Prestressed Concrete Design, Second Edition


Book Description

Prestressed concrete is widely used in the construction industry in buildings, bridges, and other structures. The new edition of this book provides up-to-date guidance on the detailed design of prestressed concrete structures according to the provisions of the latest preliminary version of Eurocode 2: Design of Concrete Structures, DD ENV 1992-1-1: 1992. The emphasis throughout is on design - the problem of providing a structure to fulfil a given purpose - but fundamental concepts are also described in detail. All major topics are dealt with, including prestressed flat slabs, an important and growing application in the design of buildings. The text is illustrated throughout with worked examples and problems for further study. Examples are given of computer spreadsheets for typical design calculations. Prestressed Concrete Design will be a valuable guide to practising engineers, students and research workers.




Reinforced Concrete Design of Tall Buildings


Book Description

An exploration of the world of concrete as it applies to the construction of buildings, Reinforced Concrete Design of Tall Buildings provides a practical perspective on all aspects of reinforced concrete used in the design of structures, with particular focus on tall and ultra-tall buildings. Written by Dr. Bungale S. Taranath, this work explains t




Reinforced Concrete Construction for Small Projects


Book Description

By using the Working Stress Design system described in the text combined with other information in this book, a builder with a good knowledge of basic arithmetic and a pocket calculator can determine the sizing and placement of steel rebar within small concrete buildings, such as earth-sheltered homes. The book covers the design, assembly, and formwork required by concrete beams, elevated slabs, walls, footings, short columns, mat foundations, and soffits. Many of these components are impossible to build using plain (unreinforced) concrete.




Design of Reinforced Concrete


Book Description

Publisher Description




Design of Reinforced Concrete Foundations


Book Description

It explains step-by-step procedure for the design of each type of foundation with the help of a large number of worked-out examples. The book provides an in-depth analysis of topics, such as wall footings, balanced footings, raft foundations, beam and slab rafts, pile caps and pile foundations.




Design of Concrete Structures


Book Description

This introduction to the principles of concrete mechanics and design focuses on the fundamentals - from very basic, elementary to the very complicated concepts and features an easy-to-follow yet thorough step-by-step design methodology. *emphasizes basic principles of the mechanics aspects of concrete design and avoids explanations of the detail requirements which can be found in the ACI Code and Commentary. *surveys modern design philosophies and features an amply illustrated tour of the world of concrete. *carefully lays out the various design procedures step-by-step - for flexural design, shear design, column design, etc, prepares and encourages students to program procedures for computer solution. Instructors, at their own discretion, can suggest follow-up coding assignment. *goes beyond the traditional description of materials to provide substantive coverage of concrete, current concrete technology, and the durability of materials - especially since many engineers will find themselves repairing, rehabilitating, and strengthening existing structures, rather than designing new ones. *explores the interrelationship between design and analysis - a typical problem area for students, especially in relation to statically indeterminate structures, reviews some structural analysis methods for continuous beams and frames, especially those methods that designers will find useful for checking purposes - e.g., moment distribution, explains how the behavior of structures can be controlled through design decisions. *includes sections on basic plate theory and yield line theory as supplements to the common design procedures of the ACI Code. *contains important optional topics that students can master through self-study after understanding the basics such as torsion, slab design, footings, and retaining walls. *includes many easy-to-follow examples worked out in great detail. *contains a large number of illustrations. *features very carefully designed problem sets that require students to think and appreciate various physical aspects of what they are doing. *contains a comprehensive glossary of terms common in concrete engineering and the construction industry. Definitions are based largely on The Cement and Concrete Terminology Report of ACI Committee 116.