Geospatial Analysis of Environmental Health


Book Description

This book focuses on a range of geospatial applications for environmental health research, including environmental justice issues, environmental health disparities, air and water contamination, and infectious diseases. Environmental health research is at an exciting point in its use of geotechnologies, and many researchers are working on innovative approaches. This book is a timely scholarly contribution in updating the key concepts and applications of using GIS and other geospatial methods for environmental health research. Each chapter contains original research which utilizes a geotechnical tool (Geographic Information Systems (GIS), remote sensing, GPS, etc.) to address an environmental health problem. The book is divided into three sections organized around the following themes: issues in GIS and environmental health research; using GIS to assess environmental health impacts; and geospatial methods for environmental health. Representing diverse case studies and geospatial methods, the book is likely to be of interest to researchers, practitioners and students across the geographic and environmental health sciences. The authors are leading researchers and practitioners in the field of GIS and environmental health.




Spatial Modeling in GIS and R for Earth and Environmental Sciences


Book Description

Spatial Modeling in GIS and R for Earth and Environmental Sciences offers an integrated approach to spatial modelling using both GIS and R. Given the importance of Geographical Information Systems and geostatistics across a variety of applications in Earth and Environmental Science, a clear link between GIS and open source software is essential for the study of spatial objects or phenomena that occur in the real world and facilitate problem-solving. Organized into clear sections on applications and using case studies, the book helps researchers to more quickly understand GIS data and formulate more complex conclusions. The book is the first reference to provide methods and applications for combining the use of R and GIS in modeling spatial processes. It is an essential tool for students and researchers in earth and environmental science, especially those looking to better utilize GIS and spatial modeling. - Offers a clear, interdisciplinary guide to serve researchers in a variety of fields, including hazards, land surveying, remote sensing, cartography, geophysics, geology, natural resources, environment and geography - Provides an overview, methods and case studies for each application - Expresses concepts and methods at an appropriate level for both students and new users to learn by example




Remote Sensing and Geospatial Technologies in Public Health


Book Description

This book is a printed edition of the Special Issue "Remote Sensing and Geospatial Technologies in Public Health" that was published in IJGI




GIS for Health and the Environment


Book Description

GIS for Health and the Environment




Geographic Information Systems - Data Science Approach


Book Description

Dive into the dynamic world of Geographic Information Systems (GIS) and data science with our comprehensive book in which innovation and insights converge. This book presents a pioneering exploration at the intersection of GIS and data science, providing a comprehensive view of their symbiotic relationship and transformative potential. It encapsulates advanced methodologies, real-world applications, and interdisciplinary approaches that redefine how we perceive and utilize spatial data. Offering a gateway to cutting-edge research and practical insights, this book serves as a crucial resource for scholars, practitioners, and enthusiasts alike. It addresses pressing challenges across diverse domains, from environmental studies to public health and predictive analytics, demonstrating the paramount significance of integrating GIS with data science methodologies. It is an essential compass guiding readers toward a deeper understanding and application of these dynamic fields in today's data-driven world.




International Journal of Advanced Remote Sensing and GIS


Book Description

International Journal of Advanced Remote Sensing and GIS (IJARSG, ISSN 2320 – 0243) is an open-access peer-reviewed scholarly journal publishes original research papers, reviews, case study, case reports, and methodology articles in all aspects of Remote Sensing and GIS including associated fields. This Journal commits to working for quality and transparency in its publishing by following standard Publication Ethics and Policies.




Principles and Dynamics of the Critical Zone


Book Description

Principles and Dynamics of the Critical Zone is an invaluable resource for undergraduate and graduate courses and an essential tool for researchers developing cutting-edge proposals. It provides a process-based description of the Critical Zone, a place that The National Research Council (2001) defines as the "heterogeneous, near surface environment in which complex interactions involving rock, soil, water, air, and living organisms regulate the natural habitat and determine the availability of life-sustaining resources." This text provides a summary of Critical Zone research and outcomes from the NSF funded Critical Zone Observatories, providing a process-based description of the Critical Zone in a wide range of environments with a specific focus on the important linkages that exist amongst the processes in each zone. This book will be useful to all scientists and students conducting research on the Critical Zone within and outside the Critical Zone Observatory Network, as well as scientists and students in the geosciences – atmosphere, geomorphology, geology and pedology. - The first text to address the principles and concepts of the Critical Zone - A comprehensive approach to the processes responsible for the development and structure of the Critical Zone in a number of environments - An essential tool for undergraduate and graduate students, and researchers developing cutting-edge proposals







Advancements in Climate and Smart Environment Technology


Book Description

The world faces escalating environmental and healthcare challenges, from climate change to managing natural resources and providing efficient medical services. These issues are complex, often requiring intricate modeling and intervention from domain experts. Traditional analytical methods need help to cope with the complexity and scale of these challenges, leading to inefficiencies and suboptimal outcomes. There is a pressing need for innovative solutions that can enhance our ability to address these issues effectively. Advancements in Climate and Smart Environment Technology present a compelling solution to these pressing problems. By leveraging the power of artificial intelligence (AI) techniques, we offer a path toward more efficient and effective solutions in environmental engineering, healthcare management, and natural resource conservation. AI provides the tools to model complex systems, optimize processes, and make informed decisions without constant expert intervention, thus revolutionizing these fields. This book is a comprehensive guide for scholars, researchers, and practitioners in various fields related to environmental and healthcare sciences. It explores the applications of AI in areas such as innovative environments, sustainable agriculture, climate change mitigation, and healthcare delivery.




Geostatistical and Geospatial Approaches for the Characterization of Natural Resources in the Environment


Book Description

These proceedings of the IAMG 2014 conference in New Delhi explore the current state of the art and inform readers about the latest geostatistical and space-based technologies for assessment and management in the contexts of natural resource exploration, environmental pollution, hazards and natural disaster research. The proceedings cover 3D visualization, time-series analysis, environmental geochemistry, numerical solutions in hydrology and hydrogeology, geotechnical engineering, multivariate geostatistics, disaster management, fractal modeling, petroleum exploration, geoinformatics, sedimentary basin analysis, spatiotemporal modeling, digital rock geophysics, advanced mining assessment and glacial studies, and range from the laboratory to integrated field studies. Mathematics plays a key part in the crust, mantle, oceans and atmosphere, creating climates that cause natural disasters, and influencing fundamental aspects of life-supporting systems and many other geological processes affecting Planet Earth. As such, it is essential to understand the synergy between the classical geosciences and mathematics, which can provide the methodological tools needed to tackle complex problems in modern geosciences. The development of science and technology, transforming from a descriptive stage to a more quantitative stage, involves qualitative interpretations such as conceptual models that are complemented by quantification, e.g. numerical models, fast dynamic geologic models, deterministic and stochastic models. Due to the increasing complexity of the problems faced by today’s geoscientists, joint efforts to establish new conceptual and numerical models and develop new paradigms are called for.