Remote Sounding of Atmospheres


Book Description

This book describes how measurements can be made of the properties of the Earth and planets using this method. It includes descriptions of the scientific principles, technical implementation, mathematical methods for analysing the measurements, a history of measurements that have been made and discussions of the phenomena that have been discovered and studied using remote sounding.




Inverse Methods for Atmospheric Sounding


Book Description

Annotation Rodgers (U. of Oxford) provides graduate students and other researchers a background to the inverse problem and its solution, with applications relating to atmospheric measurements. He introduces the stages in the reverse order than the usual approach in order to develop the learner's intuition about the nature of the inverse problem. Annotation copyrighted by Book News, Inc., Portland, OR.




Remote Sensing of atmospheres and Oceans


Book Description

Remote Sensing of Atmospheres and Oceans presents the technical proceedings of a workshop on the interpretation of remotely sensed data, held in Williamsburg, Virginia in May 1979. The main topic of the workshop is the interpretation and assessment of measurements acquired in remote sounding of different atmospheric and ocean parameters. The book contains 25 papers that cover the following topics: remote sounding of atmospheric temperature; trace gases; precipitation and aerosols; sea surface temperature; ocean color; and winds. These papers are grouped into eight parts under major topics such as inversion methods, aerosol sounding, remote sounding, gaseous constituent retrievals, and interpretation of results from space. The text is a valuable source of information to students and professionals in the fields of atmospheric physics, applied science, meteorology, and engineering.




Foundations of Atmospheric Remote Sensing


Book Description

Theoretical foundations of atmospheric remote sensing are electromagnetic theory, radiative transfer and inversion theory. This book provides an overview of these topics in a common context, compile the results of recent research, as well as fill the gaps, where needed. The following aspects are covered: principles of remote sensing, the atmospheric physics, foundations of the radiative transfer theory, electromagnetic absorption, scattering and propagation, review of computational techniques in radiative transfer, retrieval techniques as well as regularization principles of inversion theory. As such, the book provides a valuable resource for those who work with remote sensing data and want to get a broad view of theoretical foundations of atmospheric remote sensing. The book will be also useful for students and researchers working in such diverse fields like inverse problems, atmospheric physics, electromagnetic theory, and radiative transfer.




Introduction to Satellite Remote Sensing


Book Description

Introduction to Satellite Remote Sensing: Atmosphere, Ocean and Land Applications is the first reference book to cover ocean applications, atmospheric applications, and land applications of remote sensing. Applications of remote sensing data are finding increasing application in fields as diverse as wildlife ecology and coastal recreation management. The technology engages electromagnetic sensors to measure and monitor changes in the earth’s surface and atmosphere. The book opens with an introduction to the history of remote sensing, starting from when the phrase was first coined. It goes on to discuss the basic concepts of the various systems, including atmospheric and ocean, then closes with a detailed section on land applications. Due to the cross disciplinary nature of the authors’ experience and the content covered, this is a must have reference book for all practitioners and students requiring an introduction to the field of remote sensing. Provides study questions at the end of each chapter to aid learning Covers all satellite remote sensing technologies, allowing readers to use the text as instructional material Includes the most recent technologies and their applications, allowing the reader to stay up-to-date Delves into laser sensing (LIDAR) and commercial satellites (DigitalGlobe) Presents examples of specific satellite missions, including those in which new technology has been introduced







Polar Remote Sensing


Book Description

Polar Remote Sensing is a two-volume work providing a comprehensive, multidisciplinary discussion of the applications of satellite sensing. Volume 2 focuses on the ice sheets, icebergs, and interactions between ice sheets and the atmosphere and ocean. It contains information about the applications of satellite remote sensing in all relevant polar related disciplines, including glaciology, meteorology, climate and radiation balance and oceanogaraphy. It also provides a brief review of the state-of-the-art of each discipline, including current issues and questions. Various passive and active remote sensor types are discussed, and the book then concentrates on specific geophysical applications. Its interdisciplinary approach means that major advances and publications are highlighted. Polar Remote Sensing: Ice Sheets summarizes fundamental principles of detectors, imaging and geophysical product retrieval includes a chapter on the important new field of satellite synthetic-aperture radar interferometry is a "one stop shop" for polar remote sensing information contains significant new information on the Earth's polar regions describes sophisticated groundbased remote sensing applications with specific reference to their use in polar regions.




Remote Sensing of Aerosols, Clouds, and Precipitation


Book Description

Remote Sensing of Aerosols, Clouds, and Precipitation compiles recent advances in aerosol, cloud, and precipitation remote sensing from new satellite observations. The book examines a wide range of measurements from microwave (both active and passive), visible, and infrared portions of the spectrum. Contributors are experts conducting state-of-the-art research in atmospheric remote sensing using space, airborne, and ground-based datasets, focusing on supporting earth observation satellite missions for aerosol, cloud, and precipitation studies. A handy reference for scientists working in remote sensing, earth science, electromagnetics, climate physics, and space engineering. Valuable for operational forecasters, meteorologists, geospatial experts, modelers, and policymakers alike. Presents new approaches in the field, along with further research opportunities, based on the latest satellite data Focuses on how remote sensing systems can be designed/developed to solve outstanding problems in earth and atmospheric sciences Edited by a dynamic team of editors with a mixture of highly skilled and qualified authors offering world-leading expertise in the field




Lidar


Book Description

Written by leading experts in optical radar, or lidar, this book brings all the recent practices up-to-date. With a Foreword by one of the founding fathers in the area. Its broad cross-disciplinary scope should appeal to scientists ranging from the view of optical sciences to environmental engineers. Optical remote sensing has matured to become a lead method for cross-disciplinary research. This new multi-authored book reviews the state-of-the-art in a readable monograph.




Introduction to the Physics and Techniques of Remote Sensing


Book Description

The science and engineering of remote sensing--theory and applications The Second Edition of this authoritative book offers readers the essential science and engineering foundation needed to understand remote sensing and apply it in real-world situations. Thoroughly updated to reflect the tremendous technological leaps made since the publication of the first edition, this book covers the gamut of knowledge and skills needed to work in this dynamic field, including: * Physics involved in wave-matter interaction, the building blocks for interpreting data * Techniques used to collect data * Remote sensing applications The authors have carefully structured and organized the book to introduce readers to the basics, and then move on to more advanced applications. Following an introduction, Chapter 2 sets forth the basic properties of electromagnetic waves and their interactions with matter. Chapters 3 through 7 cover the use of remote sensing in solid surface studies, including oceans. Each chapter covers one major part of the electromagnetic spectrum (e.g., visible/near infrared, thermal infrared, passive microwave, and active microwave). Chapters 8 through 12 then cover remote sensing in the study of atmospheres and ionospheres. Each chapter first presents the basic interaction mechanism, followed by techniques to acquire, measure, and study the information, or waves, emanating from the medium under investigation. In most cases, a specific advanced sensor is used for illustration. The book is generously illustrated with fifty percent new figures. Numerous illustrations are reproduced in a separate section of color plates. Examples of data acquired from spaceborne sensors are included throughout. Finally, a set of exercises, along with a solutions manual, is provided. This book is based on an upper-level undergraduate and first-year graduate course taught by the authors at the California Institute of Technology. Because of the multidisciplinary nature of the field and its applications, it is appropriate for students in electrical engineering, applied physics, geology, planetary science, astronomy, and aeronautics. It is also recommended for any engineer or scientist interested in working in this exciting field.