How to Design and Report Experiments


Book Description

How to Design and Report Experiments is the perfect textbook and guide to the often bewildering world of experimental design and statistics. It provides a complete map of the entire process beginning with how to get ideas about research, how to refine your research question and the actual design of the experiment, leading on to statistical procedure and assistance with writing up of results. While many books look at the fundamentals of doing successful experiments and include good coverage of statistical techniques, this book very importantly considers the process in chronological order with specific attention given to effective design in the context of likely methods needed and expected results. Without full assessment of these aspects, the experience and results may not end up being as positive as one might have hoped. Ample coverage is then also provided of statistical data analysis, a hazardous journey in itself, and the reporting of findings, with numerous examples and helpful tips of common downfalls throughout. Combining light humour, empathy with solid practical guidance to ensure a positive experience overall, How to Design and Report Experiments will be essential reading for students in psychology and those in cognate disciplines with an experimental focus or content in research methods courses.




Reproducibility and Replicability in Science


Book Description

One of the pathways by which the scientific community confirms the validity of a new scientific discovery is by repeating the research that produced it. When a scientific effort fails to independently confirm the computations or results of a previous study, some fear that it may be a symptom of a lack of rigor in science, while others argue that such an observed inconsistency can be an important precursor to new discovery. Concerns about reproducibility and replicability have been expressed in both scientific and popular media. As these concerns came to light, Congress requested that the National Academies of Sciences, Engineering, and Medicine conduct a study to assess the extent of issues related to reproducibility and replicability and to offer recommendations for improving rigor and transparency in scientific research. Reproducibility and Replicability in Science defines reproducibility and replicability and examines the factors that may lead to non-reproducibility and non-replicability in research. Unlike the typical expectation of reproducibility between two computations, expectations about replicability are more nuanced, and in some cases a lack of replicability can aid the process of scientific discovery. This report provides recommendations to researchers, academic institutions, journals, and funders on steps they can take to improve reproducibility and replicability in science.







Experimental and Quasi-Experimental Designs for Research


Book Description

We shall examine the validity of 16 experimental designs against 12 common threats to valid inference. By experiment we refer to that portion of research in which variables are manipulated and their effects upon other variables observed. It is well to distinguish the particular role of this chapter. It is not a chapter on experimental design in the Fisher (1925, 1935) tradition, in which an experimenter having complete mastery can schedule treatments and measurements for optimal statistical efficiency, with complexity of design emerging only from that goal of efficiency. Insofar as the designs discussed in the present chapter become complex, it is because of the intransigency of the environment: because, that is, of the experimenter’s lack of complete control.




Field Experiments


Book Description

A brief, authoritative introduction to field experimentation in the social sciences. Written by two leading experts on experimental methods, this concise text covers the major aspects of experiment design, analysis, and interpretation in clear language. Students learn how to design randomized experiments, analyze the data, and interpret the findings. Beyond the authoritative coverage of the basic methodology, the authors include numerous features to help students achieve a deeper understanding of field experimentation, including rich examples from the social science literature, problem sets and discussions, data sets, and further readings.




Investigative Science Learning Environment


Book Description

The goal of this book is to introduce a reader to a new philosophy of teaching and learning physics - Investigative Science Learning Environment, or ISLE (pronounced as a small island). ISLE is an example of an "intentional" approach to curriculum design and learning activities (MacMillan and Garrison 1988 A Logical Theory of Teaching: Erotetics and Intentionality). Intentionality means that the process through which the learning occurs is as crucial for learning as the final outcome or learned content. In ISLE, the process through which students learn mirrors the practice of physics.




How to Design and Report Experiments


Book Description

How to Design and Report Experiments is the perfect textbook and guide to the often bewildering world of experimental design and statistics. It provides a complete map of the entire process beginning with how to get ideas about research, how to refine your research question and the actual design of the experiment, leading on to statistical procedure and assistance with writing up of results. While many books look at the fundamentals of doing successful experiments and include good coverage of statistical techniques, this book very importantly considers the process in chronological order with specific attention given to effective design in the context of likely methods needed and expected results. Without full assessment of these aspects, the experience and results may not end up being as positive as one might have hoped. Ample coverage is then also provided of statistical data analysis, a hazardous journey in itself, and the reporting of findings, with numerous examples and helpful tips of common downfalls throughout. Combining light humour, empathy with solid practical guidance to ensure a positive experience overall, How to Design and Report Experiments will be essential reading for students in psychology and those in cognate disciplines with an experimental focus or content in research methods courses.







Encyclopedia of Research Design


Book Description

"Comprising more than 500 entries, the Encyclopedia of Research Design explains how to make decisions about research design, undertake research projects in an ethical manner, interpret and draw valid inferences from data, and evaluate experiment design strategies and results. Two additional features carry this encyclopedia far above other works in the field: bibliographic entries devoted to significant articles in the history of research design and reviews of contemporary tools, such as software and statistical procedures, used to analyze results. It covers the spectrum of research design strategies, from material presented in introductory classes to topics necessary in graduate research; it addresses cross- and multidisciplinary research needs, with many examples drawn from the social and behavioral sciences, neurosciences, and biomedical and life sciences; it provides summaries of advantages and disadvantages of often-used strategies; and it uses hundreds of sample tables, figures, and equations based on real-life cases."--Publisher's description.




America's Lab Report


Book Description

Laboratory experiences as a part of most U.S. high school science curricula have been taken for granted for decades, but they have rarely been carefully examined. What do they contribute to science learning? What can they contribute to science learning? What is the current status of labs in our nation�s high schools as a context for learning science? This book looks at a range of questions about how laboratory experiences fit into U.S. high schools: What is effective laboratory teaching? What does research tell us about learning in high school science labs? How should student learning in laboratory experiences be assessed? Do all student have access to laboratory experiences? What changes need to be made to improve laboratory experiences for high school students? How can school organization contribute to effective laboratory teaching? With increased attention to the U.S. education system and student outcomes, no part of the high school curriculum should escape scrutiny. This timely book investigates factors that influence a high school laboratory experience, looking closely at what currently takes place and what the goals of those experiences are and should be. Science educators, school administrators, policy makers, and parents will all benefit from a better understanding of the need for laboratory experiences to be an integral part of the science curriculum-and how that can be accomplished.