Reusable Launch Vehicle


Book Description

The key to opening the use of space to private enterprise and to broader public uses lies in reducing the cost of the transportation to space. More routine, affordable access to space will entail aircraft-like quick turnaround and reliable operations. Currently, the space Shuttle is the only reusable launch vehicle, and even parts of it are expendable while other parts require frequent and extensive refurbishment. NASA's highest priority new activity, the Reusable Launch Vehicle program, is directed toward developing technologies to enable a new generation of space launchers, perhaps but not necessarily with single stage to orbit capability. This book assesses whether the technology development, test and analysis programs in propulsion and materials-related technologies are properly constituted to provide the information required to support a December 1996 decision to build the X-33, a technology demonstrator vehicle; and suggest, as appropriate, necessary changes in these programs to ensure that they will support vehicle feasibility goals.




Reusable Booster System


Book Description

On June 15, 2011, the Air Force Space Command established a new vision, mission, and set of goals to ensure continued U.S. dominance in space and cyberspace mission areas. Subsequently, and in coordination with the Air Force Research Laboratory, the Space and Missile Systems Center, and the 14th and 24th Air Forces, the Air Force Space Command identified four long-term science and technology (S&T) challenges critical to meeting these goals. One of these challenges is to provide full-spectrum launch capability at dramatically lower cost, and a reusable booster system (RBS) has been proposed as an approach to meet this challenge. The Air Force Space Command asked the Aeronautics and Space Engineering Board of the National Research Council to conduct an independent review and assessment of the RBS concept prior to considering a continuation of RBS-related activities within the Air Force Research Laboratory portfolio and before initiating a more extensive RBS development program. The committee for the Reusable Booster System: Review and Assessment was formed in response to that request and charged with reviewing and assessing the criteria and assumptions used in the current RBS plans, the cost model methodologies used to fame [frame?] the RBS business case, and the technical maturity and development plans of key elements critical to RBS implementation. The committee consisted of experts not connected with current RBS activities who have significant expertise in launch vehicle design and operation, research and technology development and implementation, space system operations, and cost analysis. The committee solicited and received input on the Air Force launch requirements, the baseline RBS concept, cost models and assessment, and technology readiness. The committee also received input from industry associated with RBS concept, industry independent of the RBS concept, and propulsion system providers which is summarized in Reusable Booster System: Review and Assessment.




Reusable Space Transportation Systems


Book Description

Brings together for the first time details of the technology available and being developed to provide totally reusable launch vehicles for the future exploitation and exploration of space.




Reusable Launch System


Book Description

What Is Reusable Launch System When transporting payloads from Earth's surface into outer space, a reusable launch vehicle has pieces that may be retrieved and used again in subsequent launches. The stages of the rocket are the most frequent component of the launch vehicle that is intended for reuse. There is also the possibility of reusing smaller components, like as rocket engines and boosters, however it is possible for reusable spacecraft to be launched atop an expendable launch vehicle. The production of these components is not required for reusable launch vehicles, which results in a considerable reduction in the overall cost of the launch. The expense of recovery and restoration, on the other hand, will reduce the value of these advantages. How You Will Benefit (I) Insights, and validations about the following topics: Chapter 1: Reusable launch system Chapter 2: Space Shuttle Chapter 3: Single-stage-to-orbit Chapter 4: Spacecraft Chapter 5: Space Shuttle program Chapter 6: Human spaceflight programs Chapter 7: Booster (rocketry) Chapter 8: Spaceplane Chapter 9: Space vehicle Chapter 10: Boeing X-37 Chapter 11: Dream Chaser Chapter 12: Launch vehicle Chapter 13: List of crewed spacecraft Chapter 14: Falcon 9 Chapter 15: Buran (spacecraft) Chapter 16: VTVL Chapter 17: Falcon Heavy Chapter 18: Takeoff and landing Chapter 19: SpaceX reusable launch system development program Chapter 20: XS-1 (spacecraft) Chapter 21: Super heavy-lift launch vehicle (II) Answering the public top questions about reusable launch system. (III) Real world examples for the usage of reusable launch system in many fields. (IV) 17 appendices to explain, briefly, 266 emerging technologies in each industry to have 360-degree full understanding of reusable launch system' technologies. Who This Book Is For Professionals, undergraduate and graduate students, enthusiasts, hobbyists, and those who want to go beyond basic knowledge or information for any kind of reusable launch system.




Spaceships


Book Description

Space transportation is one of the most essential elements for enabling activities in space. For current rockets, reliability is too low and launch cost is too high when compared to aircraft operations. Reusable Launch Vehicles could solve these deficiencies and are being investigated by many companies. This book contains a databank of 300 worldwide suborbital and orbital Reusable Launch Vehicle concepts. It covers ideas from the first concepts, such as Silver Bird, proposed by Eugen Saenger in 1944, to present ones such as SpaceShipOne, proposed by Burt Rutan in 2003, as well as all X Prize candidates. For reader friendly use, all information is prepared in the same data style, which makes this book a unique reference for rocket scientists as well as everybody interested in and fascinated by rockets. An introduction to space transportation systems, a study on the motivation for developing Reusable Launch Vehicles and a discussion about the benefit of an international Reusable Launch Vehicle program complete this book.




The Rocket Company


Book Description

"A fictionalized account of the challenges faced by a group of seven investors and their engineering team in developing a low-cost, reusable, Earth-to orbit launch vehicle. The marketing, regulatory, and technical problems are explored ... "cover p. [4].




Evaluation of the National Aerospace Initiative


Book Description

The National Aerospace Initiative (NAI) was conceived as a joint effort between the Department of Defense (DOD) and the National Aeronautics and Space Administration (NASA) to sustain the aerospace leadership of the United States through the acceleration of selected aerospace technologies: hypersonic flight, access to space, and space technologies. The Air Force became concerned about the NAI's possible consequences on Air Force programs and budget if NAI program decisions differed from Air Force priorities. To examine this issue, it asked the NRC for an independent review of the NAI. This report presents the results of that assessment. It focuses on three questions asked by the Air Force: is NAI technically feasible in the time frame laid out; is it financially feasible over that period; and is it operationally relevant.




Upgrading the Space Shuttle


Book Description

The space shuttle is a unique national resource. One of only two operating vehicles that carries humans into space, the space shuttle functions as a scientific laboratory and as a base for construction, repair, and salvage missions in low Earth orbit. It is also a heavy-lift launch vehicle (able to deliver more than 18,000 kg of payload to low Earth orbit) and the only current means of returning large payloads to Earth. Designed in the 1970s, the shuttle has frequently been upgraded to improve safety, cut operational costs, and add capability. Additional upgrades have been proposed-and some are under way-to combat obsolescence, further reduce operational costs, improve safety, and increase the ability of the National Aeronautics and Space Administration (NASA) to support the space station and other missions. In May 1998, NASA asked the National Research Council (NRC) to examine the agency's plans for further upgrades to the space shuttle system. The NRC was asked to assess NASA's method for evaluating and selecting upgrades and to conduct a top-level technical assessment of proposed upgrades.




Single Stage to Orbit


Book Description

While the glories and tragedies of the space shuttle make headlines and move the nation, the story of the shuttle forms an inseparabe part of a lesser-known but no less important drama—the search for a reusable single-stage-to-orbit rocket. Here an award-winning student of space science, Andrew J. Butrica, examines the long and tangled history of this ambitious concept, from it first glimmerings in the 1920s, when technicians dismissed it as unfeasible, to its highly expensive heyday in the midst of the Cold War, when conservative-backed government programs struggled to produce an operational flight vehicle. Butrica finds a blending of far-sighted engineering and heavy-handed politics. To the first and oldest idea—that of the reusable rocket-powered single-stage-to-orbit vehicle—planners who belonged to what President Eisenhower referred to as the military-industrial complex.added experimental ("X"), "aircraft-like" capabilties and, eventually, a "faster, cheaper, smaller" managerial approach. Single Stage to Orbit traces the interplay of technology, corporate interest, and politics, a combination that well served the conservative space agenda and ultimately triumphed—not in the realization of inexpensive, reliable space transport—but in a vision of space militarization and commercialization that would appear settled United States policy in the early twenty-first century. -- D. M. Ashford




Space Safety Regulations and Standards


Book Description

When international rules and regulations governing space travel were first being developed, only a few countries had any space presence and commercial space activity was non-existent. Today, over 50 countries have on-orbit satellites and commercial space presence is essential to commercial telecommunications and broadcasting, yet international space law remains in its infancy.Space Safety Regulations and Standards is the definitive book on regulatory initiatives involving space safety, new space safety standards, and safety related to new space technologies under development. More than 30 world experts come together in this book to share their detailed knowledge of regulatory and standard making processes in the area, combining otherwise disparate information into one essential reference and providing case studies to illustrate applications throughout space programs internationally. They address the international regulatory framework that relates to traditional space safety programs as well as the emerging regulatory framework that relates to commercial space programs, space tourism, and efforts to create commercial space station facilities. Fully endorsed by the International Association for the Advancement of Space Safety (IAASS) and provides the only definitive reference on regulations and standards for the field of space safety Combines the technical, legal and regulatory information in a clear and integrated reference work suitable for technical professionals, regulators, legal experts, and students in the field Presents a truly global insight from experienced space safety experts worldwide, with representatives from the leading associations, institutions and companies operating in the arena today




Recent Books