Reusable Launch Vehicle


Book Description

The key to opening the use of space to private enterprise and to broader public uses lies in reducing the cost of the transportation to space. More routine, affordable access to space will entail aircraft-like quick turnaround and reliable operations. Currently, the space Shuttle is the only reusable launch vehicle, and even parts of it are expendable while other parts require frequent and extensive refurbishment. NASA's highest priority new activity, the Reusable Launch Vehicle program, is directed toward developing technologies to enable a new generation of space launchers, perhaps but not necessarily with single stage to orbit capability. This book assesses whether the technology development, test and analysis programs in propulsion and materials-related technologies are properly constituted to provide the information required to support a December 1996 decision to build the X-33, a technology demonstrator vehicle; and suggest, as appropriate, necessary changes in these programs to ensure that they will support vehicle feasibility goals.




Reusable Booster System


Book Description

On June 15, 2011, the Air Force Space Command established a new vision, mission, and set of goals to ensure continued U.S. dominance in space and cyberspace mission areas. Subsequently, and in coordination with the Air Force Research Laboratory, the Space and Missile Systems Center, and the 14th and 24th Air Forces, the Air Force Space Command identified four long-term science and technology (S&T) challenges critical to meeting these goals. One of these challenges is to provide full-spectrum launch capability at dramatically lower cost, and a reusable booster system (RBS) has been proposed as an approach to meet this challenge. The Air Force Space Command asked the Aeronautics and Space Engineering Board of the National Research Council to conduct an independent review and assessment of the RBS concept prior to considering a continuation of RBS-related activities within the Air Force Research Laboratory portfolio and before initiating a more extensive RBS development program. The committee for the Reusable Booster System: Review and Assessment was formed in response to that request and charged with reviewing and assessing the criteria and assumptions used in the current RBS plans, the cost model methodologies used to fame [frame?] the RBS business case, and the technical maturity and development plans of key elements critical to RBS implementation. The committee consisted of experts not connected with current RBS activities who have significant expertise in launch vehicle design and operation, research and technology development and implementation, space system operations, and cost analysis. The committee solicited and received input on the Air Force launch requirements, the baseline RBS concept, cost models and assessment, and technology readiness. The committee also received input from industry associated with RBS concept, industry independent of the RBS concept, and propulsion system providers which is summarized in Reusable Booster System: Review and Assessment.




The Rocket Company


Book Description

"A fictionalized account of the challenges faced by a group of seven investors and their engineering team in developing a low-cost, reusable, Earth-to orbit launch vehicle. The marketing, regulatory, and technical problems are explored ... "cover p. [4].




Spaceships


Book Description

Space transportation is one of the most essential elements for enabling activities in space. For current rockets, reliability is too low and launch cost is too high when compared to aircraft operations. Reusable Launch Vehicles could solve these deficiencies and are being investigated by many companies. This book contains a databank of 300 worldwide suborbital and orbital Reusable Launch Vehicle concepts. It covers ideas from the first concepts, such as Silver Bird, proposed by Eugen Saenger in 1944, to present ones such as SpaceShipOne, proposed by Burt Rutan in 2003, as well as all X Prize candidates. For reader friendly use, all information is prepared in the same data style, which makes this book a unique reference for rocket scientists as well as everybody interested in and fascinated by rockets. An introduction to space transportation systems, a study on the motivation for developing Reusable Launch Vehicles and a discussion about the benefit of an international Reusable Launch Vehicle program complete this book.




From Earth to Orbit


Book Description

If the United States hopes to continue as a leader in space, it must invest now in better earth-to-orbit technology by replacing obsolete launch facilities while also developing a new class of more robust and reliable vehicles. From Earth to Orbit provides strategies to reduce launch costs while increasing the reliability and resiliency of vehicles. It also recommends continued improvements for the Space Shuttle Orbiter and its subsystems and the development of a Space Transportation Main Engine (STME).




Single Stage to Orbit


Book Description

While the glories and tragedies of the space shuttle make headlines and move the nation, the story of the shuttle forms an inseparabe part of a lesser-known but no less important drama—the search for a reusable single-stage-to-orbit rocket. Here an award-winning student of space science, Andrew J. Butrica, examines the long and tangled history of this ambitious concept, from it first glimmerings in the 1920s, when technicians dismissed it as unfeasible, to its highly expensive heyday in the midst of the Cold War, when conservative-backed government programs struggled to produce an operational flight vehicle. Butrica finds a blending of far-sighted engineering and heavy-handed politics. To the first and oldest idea—that of the reusable rocket-powered single-stage-to-orbit vehicle—planners who belonged to what President Eisenhower referred to as the military-industrial complex.added experimental ("X"), "aircraft-like" capabilties and, eventually, a "faster, cheaper, smaller" managerial approach. Single Stage to Orbit traces the interplay of technology, corporate interest, and politics, a combination that well served the conservative space agenda and ultimately triumphed—not in the realization of inexpensive, reliable space transport—but in a vision of space militarization and commercialization that would appear settled United States policy in the early twenty-first century. -- D. M. Ashford




Space Safety Regulations and Standards


Book Description

When international rules and regulations governing space travel were first being developed, only a few countries had any space presence and commercial space activity was non-existent. Today, over 50 countries have on-orbit satellites and commercial space presence is essential to commercial telecommunications and broadcasting, yet international space law remains in its infancy.Space Safety Regulations and Standards is the definitive book on regulatory initiatives involving space safety, new space safety standards, and safety related to new space technologies under development. More than 30 world experts come together in this book to share their detailed knowledge of regulatory and standard making processes in the area, combining otherwise disparate information into one essential reference and providing case studies to illustrate applications throughout space programs internationally. They address the international regulatory framework that relates to traditional space safety programs as well as the emerging regulatory framework that relates to commercial space programs, space tourism, and efforts to create commercial space station facilities. Fully endorsed by the International Association for the Advancement of Space Safety (IAASS) and provides the only definitive reference on regulations and standards for the field of space safety Combines the technical, legal and regulatory information in a clear and integrated reference work suitable for technical professionals, regulators, legal experts, and students in the field Presents a truly global insight from experienced space safety experts worldwide, with representatives from the leading associations, institutions and companies operating in the arena today




Design Methodologies for Space Transportation Systems


Book Description

Annotation "Design Methodologies for Space Transportation Systems is a sequel to the author's earlier text, "Space Transportation: A Systems Approach to Analysis and Design. Both texts represent the most comprehensive exposition of the existing knowledge and practice in the design and project management of space transportation systems, and they reflect a wealth of experience by the author with the design and management of space systems. The text discusses new conceptual changes in the design philosophy away from multistage expendable vehicles to winged, reusable launch vehicles and presents an overview of the systems engineering and vehicle design process as well as systems trades and analysis. Individual chapters are devoted to specific disciplines such as aerodynamics, aerothermal analysis, structures, materials, propulsion, flight mechanics and trajectories, avionics and computers, and control systems. The final chapters deal with human factors, payload, launch and mission operations, safety, and mission assurance. The two texts by the author provide a valuable source of information for the space transportation community of designers, operators, and managers. A companion CD-ROM succinctly packages some oversized figures and tables, resources for systems engineering and launch ranges, and a compendium of software programs. The computer programs include the USAF AIRPLANE AND MISSILE DATCOM CODES (with extensive documentation); COSTMODL for software costing; OPGUID launch vehicle trajectory generator; SUPERFLO-a series of 11 programs intended for solving compressible flow problems in ducts and pipes found in industrial facilities; and a wealth of Microsoft Excel spreadsheet programs covering thedisciplines of statistics, vehicle trajectories, propulsion performance, math utilities,




Launching Science


Book Description

In January 2004 NASA was given a new policy direction known as the Vision for Space Exploration. That plan, now renamed the United States Space Exploration Policy, called for sending human and robotic missions to the Moon, Mars, and beyond. In 2005 NASA outlined how to conduct the first steps in implementing this policy and began the development of a new human-carrying spacecraft known as Orion, the lunar lander known as Altair, and the launch vehicles Ares I and Ares V. Collectively, these are called the Constellation System. In November 2007 NASA asked the National Research Council (NRC) to evaluate the potential for new science opportunities enabled by the Constellation System of rockets and spacecraft. The NRC committee evaluated a total of 17 mission concepts for future space science missions. Of those, the committee determined that 12 would benefit from the Constellation System and five would not. This book presents the committee's findings and recommendations, including cost estimates, a review of the technical feasibility of each mission, and identification of the missions most deserving of future study.