Geotechnical Safety and Risk V


Book Description

Geotechnical Risk and Safety V contains contributions presented at the 5th International Symposium on Geotechnical Safety and Risk (5th ISGSR, Rotterdam, 13-16 October 2015) which was organized under the auspices of the Geotechnical Safety Network (GEOSNet) and the following technical committees of the of the International Society of Soil Mechanics and Geotechnical Engineering (ISSGME): • TC304 Engineering Practice of Risk Assessment & Management • TC205 Safety and Serviceability in Geotechnical Design • TC212 Deep Foundations • TC302 Forensic Geotechnical Engineering Geotechnical Risk and Safety V covers seven themes: 1. Geotechnical Risk Management and Risk Communication 2. Variability in Ground Conditions and Site Investigation 3. Reliability and Risk Analysis of Geotechnical Structures 4. Limit-state design in Geotechnical Engineering 5. Assessment and Management of Natural Hazards 6. Contractual and Legal Issues of Foundation and (Under)Ground Works 7. Case Studies, Monitoring and Observational Method The 5th ISGSR is the continuation of a series of symposiums and workshops on geotechnical risk and reliability, starting with LSD2000 (Melbourne, Australia), IWS2002 (Tokyo and Kamakura, Japan), LSD2003 (Cambridge, USA), Georisk2004 (Bangalore, India), Taipei2006 (Taipei, Taiwan), the 1st ISGSR (Shanghai, China, 2007), the 2nd ISGSR (Gifu, Japan, 2009), the 3rd ISGSR (Munich, Germany, 2011) and the 4th ISGSR (Hong Kong, 2013).







Risk Assessment in Geotechnical Engineering


Book Description

NEW PROBABILISTIC APPROACHES FOR REALISTIC RISK ASSESSMENT IN GEOTECHNICAL ENGINEERING. This text presents a thorough examination of the theories and methodologies available for risk assessment in geotechnical engineering, spanning the full range from established single-variable and "first order" methods to the most recent, advanced numerical developments. In response to the growing application of LRFD methodologies in geotechnical design, coupled with increased demand for risk assessments from clients ranging from regulatory agencies to insurance companies, authors Fenton and Griffiths have introduced an innovative reliability-based risk assessment method, the Random Finite Element Method (RFEM). The authors have spent more than fifteen years developing this statistically based method for modeling the real spatial variability of soils and rocks. As demonstrated in the book, RFEM performs better in real-world applications than traditional risk assessment tools that do not properly account for the spatial variability of geomaterials. This text is divided into two parts: Part One, Theory, explains the theory underlying risk assessment methods in geotechnical engineering. This part's seven chapters feature more than 100 worked examples, enabling you to develop a detailed understanding of the methods. Part Two, Practice, demonstrates how to use advanced probabilistic tools for several classical geotechnical engineering applications. Working with the RFEM, the authors show how to assess risk in problems familiar to all geotechnical engineers. All the programs used for the geotechnical applications discussed in Part Two may be downloaded from the authors' Web site at www.engmath.dal.ca/rfem/ at no charge, enabling you to duplicate the authors' results and experiment with your own data. In short, you get all the theory and practical guidance you need to apply the most advanced probabilistic approaches for managing uncertainty in geotechnical design.




Risk and Reliability in Geotechnical Engineering


Book Description

Establishes Geotechnical Reliability as Fundamentally Distinct from Structural Reliability Reliability-based design is relatively well established in structural design. Its use is less mature in geotechnical design, but there is a steady progression towards reliability-based design as seen in the inclusion of a new Annex D on "Reliability of Geotechnical Structures" in the third edition of ISO 2394. Reliability-based design can be viewed as a simplified form of risk-based design where different consequences of failure are implicitly covered by the adoption of different target reliability indices. Explicit risk management methodologies are required for large geotechnical systems where soil and loading conditions are too varied to be conveniently slotted into a few reliability classes (typically three) and an associated simple discrete tier of target reliability indices. Provides Realistic Practical Guidance Risk and Reliability in Geotechnical Engineering makes these reliability and risk methodologies more accessible to practitioners and researchers by presenting soil statistics which are necessary inputs, by explaining how calculations can be carried out using simple tools, and by presenting illustrative or actual examples showcasing the benefits and limitations of these methodologies. With contributions from a broad international group of authors, this text: Presents probabilistic models suited for soil parameters Provides easy-to-use Excel-based methods for reliability analysis Connects reliability analysis to design codes (including LRFD and Eurocode 7) Maximizes value of information using Bayesian updating Contains efficient reliability analysis methods Accessible To a Wide Audience Risk and Reliability in Geotechnical Engineering presents all the "need-to-know" information for a non-specialist to calculate and interpret the reliability index and risk of geotechnical structures in a realistic and robust way. It suits engineers, researchers, and students who are interested in the practical outcomes of reliability and risk analyses without going into the intricacies of the underlying mathematical theories.




Uncertainty and Ground Conditions


Book Description

All civil engineering and construction projects require some sort of solid foundation, but ground conditions bring some degree of uncertainty to every project. Dealing properly with uncertainty over ground conditions can make the difference between the commercial success and failure of a project.With the costs of failing to accurately predict groun




Engineering Tools for Environmental Risk Management


Book Description

Chemical substances, physical agents and built structures exhibit various types of hazard due to their inherent toxic, mutagenic, carcinogenic, reprotoxic and sensitizing character or damaging to the immune and hormone system. The first steps in managing an environment contaminated by chemical substances are characterization of hazards and quantifi




Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering


Book Description

Risk, Reliability and Sustainable Remediation in the Field of Civil and Environmental Engineering illustrates the concepts of risk, reliability analysis, its estimation, and the decisions leading to sustainable development in the field of civil and environmental engineering. The book provides key ideas on risks in performance failure and structural failures of all processes involved in civil and environmental systems, evaluates reliability, and discusses the implications of measurable indicators of sustainability in important aspects of multitude of civil engineering projects. It will help practitioners become familiar with tolerances in design parameters, uncertainties in the environment, and applications in civil and environmental systems. Furthermore, the book emphasizes the importance of risks involved in design and planning stages and covers reliability techniques to discover and remove the potential failures to achieve a sustainable development. - Contains relevant theory and practice related to risk, reliability and sustainability in the field of civil and environment engineering - Gives firsthand experience of new tools to integrate existing artificial intelligence models with large information obtained from different sources - Provides engineering solutions that have a positive impact on sustainability




Geotechnical Engineering of Dams


Book Description

This book provides a comprehensive text on the geotechnical and geological aspects of the investigations for and the design and construction of new dams and the review and assessment of existing dams. The book provides dam engineers and geologists with a practical approach, and gives university students an insight into the subject of dam engineering. All phases of investigation, design and construction are covered, through to the preliminary and detailed design phases and ultimately the construction phase. This revised and expanded 2nd edition includes a lengthy new chapter on the assessment of the likelihood of failure of dams by internal erosion and piping.




Resilience and Urban Risk Management


Book Description

Resilience and Urban Risk Management presents the latest progress made in designing resilient towns, and identifies leads to be explored for attaining the objective of systematically integrating risks into urban environments The aim of the book is to provide guidance in designing and planning future cities, and to create a new form of risk manageme




Quantitative Risk Management and Decision Making in Construction


Book Description

Singh introduces valuable techniques for weighing and evaluating alternatives in decision making with a focus on risk analysis for identifying, quantifying, and mitigating risks associated with construction projects.