Risk Theory: A Heavy Tail Approach


Book Description

'Heavy-tailed risk modelling plays a central role in modern risk theory; within this perspective, the book provides an excellent guide concerning problems and solutions in risk theory.'zbMATHThis book is written to help graduate students and young researchers to enter quickly into the subject of Risk Theory. It can also be used by actuaries and financial practitioners for the optimization of their decisions and further by regulatory authorities for the stabilization of the insurance industry. The topic of extreme claims is especially presented as a crucial feature of the modern ruin probability.




Risk Theory


Book Description

Preface -- Classical risk model -- Renewal risk model -- Ruin probability estimation -- Extreme value theory -- Regular variation -- Ruin under subexponentiality -- Random sums -- The single big jump -- Ruin under constant interest force -- Absolute ruin -- Discrete dependence model -- Ruin under dependence -- Multivariate regular variation -- Bibliography -- Index




The Fundamentals of Heavy Tails


Book Description

Heavy tails –extreme events or values more common than expected –emerge everywhere: the economy, natural events, and social and information networks are just a few examples. Yet after decades of progress, they are still treated as mysterious, surprising, and even controversial, primarily because the necessary mathematical models and statistical methods are not widely known. This book, for the first time, provides a rigorous introduction to heavy-tailed distributions accessible to anyone who knows elementary probability. It tackles and tames the zoo of terminology for models and properties, demystifying topics such as the generalized central limit theorem and regular variation. It tracks the natural emergence of heavy-tailed distributions from a wide variety of general processes, building intuition. And it reveals the controversy surrounding heavy tails to be the result of flawed statistics, then equips readers to identify and estimate with confidence. Over 100 exercises complete this engaging package.




Handbook Of Heavy-tailed Distributions In Asset Management And Risk Management


Book Description

The study of heavy-tailed distributions allows researchers to represent phenomena that occasionally exhibit very large deviations from the mean. The dynamics underlying these phenomena is an interesting theoretical subject, but the study of their statistical properties is in itself a very useful endeavor from the point of view of managing assets and controlling risk. In this book, the authors are primarily concerned with the statistical properties of heavy-tailed distributions and with the processes that exhibit jumps. A detailed overview with a Matlab implementation of heavy-tailed models applied in asset management and risk managements is presented. The book is not intended as a theoretical treatise on probability or statistics, but as a tool to understand the main concepts regarding heavy-tailed random variables and processes as applied to real-world applications in finance. Accordingly, the authors review approaches and methodologies whose realization will be useful for developing new methods for forecasting of financial variables where extreme events are not treated as anomalies, but as intrinsic parts of the economic process.




Risk and Insurance


Book Description

This textbook provides a broad overview of the present state of insurance mathematics and some related topics in risk management, financial mathematics and probability. Both non-life and life aspects are covered. The emphasis is on probability and modeling rather than statistics and practical implementation. Aimed at the graduate level, pointing in part to current research topics, it can potentially replace other textbooks on basic non-life insurance mathematics and advanced risk management methods in non-life insurance. Based on chapters selected according to the particular topics in mind, the book may serve as a source for introductory courses to insurance mathematics for non-specialists, advanced courses for actuarial students, or courses on probabilistic aspects of risk. It will also be useful for practitioners and students/researchers in related areas such as finance and statistics who wish to get an overview of the general area of mathematical modeling and analysis in insurance.




The Cramér–Lundberg Model and Its Variants


Book Description

This book offers a comprehensive examination of the Cramér–Lundberg model, which is the most extensively researched model in ruin theory. It covers the fundamental dynamics of an insurance company's surplus level in great detail, presenting a thorough analysis of the ruin probability and related measures for both the standard model and its variants. Providing a systematic and self-contained approach to evaluate the crucial quantities found in the Cramér–Lundberg model, the book makes use of connections with related queueing models when appropriate, and its emphasis on clean transform-based techniques sets it apart from other works. In addition to consolidating a wealth of existing results, the book also derives several new outcomes using the same methodology. This material is complemented by a thoughtfully chosen collection of exercises. The book's primary target audience is master's and starting PhD students in applied mathematics, operations research, and actuarial science, although it also serves as a useful methodological resource for more advanced researchers. The material is self-contained, requiring only a basic grounding in probability theory and some knowledge of transform techniques.




Heavy Tails and Copulas


Book Description

"This book offers a unified approach to the study of crises, large fluctuations, dependence and contagion effects in economics and finance. It covers important topics in statistical modeling and estimation, which combine the notions of copulas and heavy tails — two particularly valuable tools of today's research in economics, finance, econometrics and other fields — in order to provide a new way of thinking about such vital problems as diversification of risk and propagation of crises through financial markets due to contagion phenomena, among others. The aim is to arm today's economists with a toolbox suited for analyzing multivariate data with many outliers and with arbitrary dependence patterns. The methods and topics discussed and used in the book include, in particular, majorization theory, heavy-tailed distributions and copula functions — all applied to study robustness of economic, financial and statistical models, and estimation methods to heavy tails and dependence."--Publisher's website.




Handbook of Heavy Tailed Distributions in Finance


Book Description

The Handbooks in Finance are intended to be a definitive source for comprehensive and accessible information in the field of finance. Each individual volume in the series should present an accurate self-contained survey of a sub-field of finance, suitable for use by finance and economics professors and lecturers, professional researchers, graduate students and as a teaching supplement. The goal is to have a broad group of outstanding volumes in various areas of finance. The Handbook of Heavy Tailed Distributions in Finance is the first handbook to be published in this series.This volume presents current research focusing on heavy tailed distributions in finance. The contributions cover methodological issues, i.e., probabilistic, statistical and econometric modelling under non- Gaussian assumptions, as well as the applications of the stable and other non -Gaussian models in finance and risk management.




Statistical Data Fusion


Book Description

'The book provides a comprehensive review of the DRM approach to data fusion. It is well written and easy to follow, although the technical details are not trivial. The authors did an excellent job in making a concise introduction of the statistical techniques in data fusion. The book contains several real data … Overall, I found that the book covers an important topic and the DRM is a promising tool in this area. Researchers on data fusion will surely find this book very helpful and I will use this book in studying with my PhD students.'Journal of the American Statistical AssociationThis book comes up with estimates or decisions based on multiple data sources as opposed to more narrowly defined estimates or decisions based on single data sources. And as the world is awash with data obtained from numerous and varied processes, there is a need for appropriate statistical methods which in general produce improved inference by multiple data sources.The book contains numerous examples useful to practitioners from genomics. Topics range from sensors (radars), to small area estimation of body mass, to the estimation of small tail probabilities, to predictive distributions in time series analysis.




Modern Actuarial Risk Theory


Book Description

Modern Actuarial Risk Theory contains what every actuary needs to know about non-life insurance mathematics. It starts with the standard material like utility theory, individual and collective model and basic ruin theory. Other topics are risk measures and premium principles, bonus-malus systems, ordering of risks and credibility theory. It also contains some chapters about Generalized Linear Models, applied to rating and IBNR problems. As to the level of the mathematics, the book would fit in a bachelors or masters program in quantitative economics or mathematical statistics. This second and.