RNA/DNA and Cancer


Book Description

In this book, the author Joseph G. Sinkovics liberally shares his views on the cancer cell which he has been observing in vivo and in vitro, over a life time. Readers will learn how, as an inherent faculty of the RNA/DNA complex, the primordial cell survival pathways are endogenously reactivated in an amplified or constitutive manner in the multicellular host, and are either masquerading as self-elements or as placentas, to which the multicellular host is evolutionarily trained to extend full support. The host obliges. The author explains that there is no such evidence that “malignantly transformed” human cells survive in nature. However, when cared for in the laboratory, these cells live and replicate as immortalized cultures. These cells retain their vitality upon storage in liquid nitrogen. One can only imagine an astrophysical environment in which such cells could survive; perhaps, first their seemingly humble exosomes would populate that environment. Immortal cell populations so created may survive as individuals, or may even re-organize themselves into multicellular colonies, as representatives of life for the duration of the Universe. This thought-provoking book is the work of a disciplined investigator and clinician with an impeccable reputation, and he enters a territory that very few if any before him have approached from the same angles. It will appeal to researchers with an interest in cell survival pathways and those researching cancer cells.




The Genetics of Cancer


Book Description

It has been recognized for almost 200 years that certain families seem to inherit cancer. It is only in the past decade, however, that molecular genetics and epidemiology have combined to define the role of inheritance in cancer more clearly, and to identify some of the genes involved. The causative genes can be tracked through cancer-prone families via genetic linkage and positional cloning. Several of the genes discovered have subsequently been proved to play critical roles in normal growth and development. There are also implications for the families themselves in terms of genetic testing with its attendant dilemmas, if it is not clear that useful action will result. The chapters in The Genetics of Cancer illustrate what has already been achieved and take a critical look at the future directions of this research and its potential clinical applications.




RNA-Based Regulation in Human Health and Disease


Book Description

RNA-based Regulation in Human Health and Disease offers an in-depth exploration of RNA mediated genome regulation at different hierarchies. Beginning with multitude of canonical and non-canonical RNA populations, especially noncoding RNA in human physiology and evolution, further sections examine the various classes of RNAs (from small to large noncoding and extracellular RNAs), functional categories of RNA regulation (RNA-binding proteins, alternative splicing, RNA editing, antisense transcripts and RNA G-quadruplexes), dynamic aspects of RNA regulation modulating physiological homeostasis (aging), role of RNA beyond humans, tools and technologies for RNA research (wet lab and computational) and future prospects for RNA-based diagnostics and therapeutics. One of the core strengths of the book includes spectrum of disease-specific chapters from experts in the field highlighting RNA-based regulation in metabolic & neurodegenerative disorders, cancer, inflammatory disease, viral and bacterial infections. We hope the book helps researchers, students and clinicians appreciate the role of RNA-based regulation in genome regulation, aiding the development of useful biomarkers for prognosis, diagnosis, and novel RNA-based therapeutics. - Comprehensive information of non-canonical RNA-based genome regulation modulating human health and disease - Defines RNA classes with special emphasis on unexplored world of noncoding RNA at different hierarchies - Disease specific role of RNA - causal, prognostic, diagnostic and therapeutic - Features contributions from leading experts in the field




Comparative Oncology


Book Description




Holland-Frei Cancer Medicine


Book Description

Holland-Frei Cancer Medicine, Ninth Edition, offers a balanced view of the most current knowledge of cancer science and clinical oncology practice. This all-new edition is the consummate reference source for medical oncologists, radiation oncologists, internists, surgical oncologists, and others who treat cancer patients. A translational perspective throughout, integrating cancer biology with cancer management providing an in depth understanding of the disease An emphasis on multidisciplinary, research-driven patient care to improve outcomes and optimal use of all appropriate therapies Cutting-edge coverage of personalized cancer care, including molecular diagnostics and therapeutics Concise, readable, clinically relevant text with algorithms, guidelines and insight into the use of both conventional and novel drugs Includes free access to the Wiley Digital Edition providing search across the book, the full reference list with web links, illustrations and photographs, and post-publication updates







Mutation Detection


Book Description

Mutation detection is increasingly undertaken in a wide spectrum of research areas: in medicine it is fundamental in isolating disease genes and diagnbosis, and is especially important in cancer research; in biology, commercially important genes can be identified by the mutations they contain. But mutation detection is time-consuming and expensive. This volume offers the latest tried and tested protocols for a range of detection methods, from the labs of the leading researchers in the field.




Mechanisms of Carcinogenesis


Book Description

but also the possibility of intervention in specific stages. In Human behavior, including stress and other factors, plays an important role in neoplasia, although too little is known addition, variables which affect cancer development as well on the reasons for such development. Carcinogens, which as some endogenous factors can be better delineated help initiate the neoplastic process, may be either synthetic through such investigations. The topics of this volume encompass premalignant non or naturally-occurring. Cancer causation may be ascribed to invasive lesions, species-specific aspects of carcinogenicity, certain chemicals, physical agents, radioactive materials, viruses, parasites, the genetic make-up of the organism, and radiation, viruses, a quantum theory of carinogenesis, onco bacteria. Humans, eumetazoan animals and vascular plants genes, and selected environmental carcinogens. are susceptible to the first six groups of cancer causes, whe reas the last group, bacteria, seems to affect only vascular plants. Neoplastic development may begin with impairment ofJmdy defenses by a toxic material (carcinogen) which acts as an initiator, followed by promotion and progression to an overt neoplastic state. Investigation of these processes Series Editor Volume Editor allows not only a better insight into the mechanism of action Hans E. Kaiser Elizabeth K. Weisburger vii ACKNOWLEDGEMENT Inspiration and encouragement for this wide ranging project on cancer distribution and dissemination from a comparative biological and clinical point of view, was given by my late friend E. H. Krokowski.




Cancer Genomics for the Clinician


Book Description

Cancer Genomics for the Clinician is a practical guide to cancer genomics and its application to cancer diagnosis and care. The book begins with a brief overview of the various types of genetic alterations that are encountered in cancer, followed by accessible and applicable information on next generation sequencing technology and bioinformatics; tumor heterogeneity; whole genome, exome, and transcriptome sequencing; epigenomics; and data analysis and interpretation. Each chapter provides essential explanations of concepts, terminology, and methods. Also included are tips for interpreting and analyzing molecular data, as well as a discussion of molecular predictors for targeted therapies covering hematologic malignancies and solid tumors. The final chapter explains the use of FDA-approved genomic-based targeted therapies for breast cancer, lung cancer, sarcomas, gastrointestinal cancers, urologic cancers, head and neck cancer, thyroid cancer, and many more. Assembled in an accessible format specifically designed for the non-expert, this book provides the clinical oncologist, early career practitioner, and trainee with an essential understanding of the molecular and genetic basis of cancer and the clinical aspects that have led to advancements in diagnosis and treatment. With this resource, physicians and trainees will increase their breadth of knowledge and be better equipped to educate patients and families who want to know more about their genetic predispositions to cancer and the targeted therapies that could be considered and prescribed. Key Features: Describes how cancer genomics and next generation sequencing informs cancer screening, risk factors, therapeutic options, and clinical management across cancer types Explains what mutations are, what tests are needed, and how to interpret the results Provides information on FDA-approved targeted therapies that are being used in the clinic Covers different sequencing platforms and technologies and how they perform in research settings Includes access to the fully searchable eBook




Application of Bioinformatics in Cancers


Book Description

This collection of 25 research papers comprised of 22 original articles and 3 reviews is brought together from international leaders in bioinformatics and biostatistics. The collection highlights recent computational advances that improve the ability to analyze highly complex data sets to identify factors critical to cancer biology. Novel deep learning algorithms represent an emerging and highly valuable approach for collecting, characterizing and predicting clinical outcomes data. The collection highlights several of these approaches that are likely to become the foundation of research and clinical practice in the future. In fact, many of these technologies reveal new insights about basic cancer mechanisms by integrating data sets and structures that were previously immiscible. Accordingly, the series presented here bring forward a wide range of artificial intelligence approaches and statistical methods that can be applied to imaging and genomics data sets to identify previously unrecognized features that are critical for cancer. Our hope is that these articles will serve as a foundation for future research as the field of cancer biology transitions to integrating electronic health record, imaging, genomics and other complex datasets in order to develop new strategies that improve the overall health of individual patients.




Recent Books