Robust Control of Time-delay Systems


Book Description

Recently, there have been significant developments in robust control of time-delay systems. This volume presents a systematic treatment of robust control for such systems in the frequency domain. The emphasis is on systems with a single input or output delay, although the delay-free part of the plant can be multi-input-multi-output, in which case the delays in different channels should be the same. The author covers the whole range of H-infinity control of time-delay systems: from controller parameterization implementation; from the Nehari problem to the four-block problem; from theoretical developments to practical issues. The major tools used are similarity transformation, the chain-scattering approach and J-spectral factorization. Self-contained, "Robust Control of Time-delay Systems" will interest control theorists and mathematicians working with time-delay systems. Its methodical approach will be of value to graduates studying general robust control theory or its applications in time-delay systems.




Stability, Control, and Computation for Time-Delay Systems


Book Description

Time delays are important components of many systems in, for instance, engineering, physics, economics, and the life sciences, because the transfer of material, energy, and information is usually not instantaneous. Time delays may appear as computation and communication lags, they model transport phenomena and heredity, and they arise as feedback delays in control loops. This monograph addresses the problem of stability analysis, stabilization, and robust fixed-order control of dynamical systems subject to delays, including both retarded- and neutral-type systems. Within the eigenvalue-based framework, an overall solution is given to the stability analysis, stabilization, and robust control design problem, using both analytical methods and numerical algorithms and applicable to a broad class of linear time-delay systems.? In this revised edition, the authors make the leap from stabilization to the design of robust and optimal controllers and from retarded-type to neutral-type delay systems, thus enlarging the scope of the book within control; include new, state-of-the-art material on numerical methods and algorithms to broaden the book?s focus and to reach additional research communities, in particular numerical linear algebra and numerical optimization; and increase the number and range of applications to better illustrate the effectiveness and generality of their approach.?




Linear Parameter-Varying and Time-Delay Systems


Book Description

This book provides an introduction to the analysis and control of Linear Parameter-Varying Systems and Time-Delay Systems and their interactions. The purpose is to give the readers some fundamental theoretical background on these topics and to give more insights on the possible applications of these theories. This self-contained monograph is written in an accessible way for readers ranging from undergraduate/PhD students to engineers and researchers willing to know more about the fields of time-delay systems, parameter-varying systems, robust analysis, robust control, gain-scheduling techniques in the LPV fashion and LMI based approaches. The only prerequisites are basic knowledge in linear algebra, ordinary differential equations and (linear) dynamical systems. Most of the results are proved unless the proof is too complex or not necessary for a good understanding of the results. In the latter cases, suitable references are systematically provided. The first part pertains on the representation, analysis and control of LPV systems along with a reminder on robust analysis and control techniques. The second part is concerned with the representation and analysis of time-delay systems using various time-domain techniques. The third and last part is devoted to the representation, analysis, observation, filtering and control of LPV time-delay systems. The book also presents many important basic and advanced results on the manipulation of LMIs.




Time-delay Systems: Analysis And Control Using The Lambert W Function


Book Description

This book comprehensively presents a recently developed novel methodology for analysis and control of time-delay systems. Time-delays frequently occurs in engineering and science. Such time-delays can cause problems (e.g. instability) and limit the achievable performance of control systems. The concise and self-contained volume uses the Lambert W function to obtain solutions to time-delay systems represented by delay differential equations. Subsequently, the solutions are used to analyze essential system properties and to design controllers precisely and effectively.




Optimal and Robust Control


Book Description

While there are many books on advanced control for specialists, there are few that present these topics for nonspecialists. Assuming only a basic knowledge of automatic control and signals and systems, Optimal and Robust Control: Advanced Topics with MATLAB® offers a straightforward, self-contained handbook of advanced topics and tools in automatic control. Techniques for Controlling System Performance in the Presence of Uncertainty The book deals with advanced automatic control techniques, paying particular attention to robustness—the ability to guarantee stability in the presence of uncertainty. It explains advanced techniques for handling uncertainty and optimizing the control loop. It also details analytical strategies for obtaining reduced order models. The authors then propose using the Linear Matrix Inequalities (LMI) technique as a unifying tool to solve many types of advanced control problems. Topics covered include: LQR and H-infinity approaches Kalman and singular value decomposition Open-loop balancing and reduced order models Closed-loop balancing Passive systems and bounded-real systems Criteria for stability control This easy-to-read text presents the essential theoretical background and provides numerous examples and MATLAB exercises to help the reader efficiently acquire new skills. Written for electrical, electronic, computer science, space, and automation engineers interested in automatic control, this book can also be used for self-study or for a one-semester course in robust control.




Stability and Control of Time-delay Systems


Book Description

Although the last decade has witnessed significant advances in control theory for finite and infinite dimensional systems, the stability and control of time-delay systems have not been fully investigated. Many problems exist in this field that are still unresolved, and there is a tendency for the numerical methods available either to be too general or too specific to be applied accurately across a range of problems. This monograph brings together the latest trends and new results in this field, with the aim of presenting methods covering a large range of techniques. Particular emphasis is placed on methods that can be directly applied to specific problems. The resulting book is one that will be of value to both researchers and practitioners.




Stability of Time-Delay Systems


Book Description

This book is a self-contained presentation of the background and progress of the study of time-delay systems, a subject with broad applications to a number of areas.




Delay Effects on Stability


Book Description

This monograph is devoted to the effect of delays on the stability properties of dynamical systems. Stability regions with respect to the delay parameters are considered, and some sufficient characterizations are proposed. This monograph addresses general delay problems and offers solutions in some cases. In other cases, approximations of the stability regions can be proposed. The interpretation of delays as uncertainty allows the authors to use the advances in robust control and robust convex optimization to solve or to approximate the solutions of the corresponding problems.




Robust Control and Filtering of Singular Systems


Book Description

Singular systems have been widely studied in the past two decades due to their extensive applications in modelling and control of electrical circuits, power systems, economics and other areas. Interest has grown recently in the stability analysis and control of singular systems with parameter uncertainties due to their frequent presence in dynamic systems, which is much more complicated than that of state-space systems because controllers must be designed so that the closed-loop system is not only robustly stable, but also regular and impulse-free (in the continuous case) or causal (in the discrete case), while the latter two issues do not arise in the state-space case. This monograph aims to present up-to-date research developments and references on robust control and filtering of uncertain singular systems in a unified matrix inequality setting. It provides a coherent approach to studying control and filtering problems as extensions of state-space systems without the commonly used slow-fast decomposition. It contains valuable reference material for researchers wishing to explore the area of singular systems, and its contents are also suitable for a one-semester graduate course.




Robust Control of Uncertain Dynamic Systems


Book Description

This textbook aims to provide a clear understanding of the various tools of analysis and design for robust stability and performance of uncertain dynamic systems. In model-based control design and analysis, mathematical models can never completely represent the “real world” system that is being modeled, and thus it is imperative to incorporate and accommodate a level of uncertainty into the models. This book directly addresses these issues from a deterministic uncertainty viewpoint and focuses on the interval parameter characterization of uncertain systems. Various tools of analysis and design are presented in a consolidated manner. This volume fills a current gap in published works by explicitly addressing the subject of control of dynamic systems from linear state space framework, namely using a time-domain, matrix-theory based approach. This book also: Presents and formulates the robustness problem in a linear state space model framework. Illustrates various systems level methodologies with examples and applications drawn from aerospace, electrical and mechanical engineering. Provides connections between lyapunov-based matrix approach and the transfer function based polynomial approaches. Robust Control of Uncertain Dynamic Systems: A Linear State Space Approach is an ideal book for first year graduate students taking a course in robust control in aerospace, mechanical, or electrical engineering.