Robust Filtering for Uncertain Systems


Book Description

This monograph provides the reader with a systematic treatment of robust filter design, a key issue in systems, control and signal processing, because of the fact that the inevitable presence of uncertainty in system and signal models often degrades the filtering performance and may even cause instability. The methods described are therefore not subject to the rigorous assumptions of traditional Kalman filtering. The monograph is concerned with robust filtering for various dynamical systems with parametric uncertainties and focuses on parameter-dependent approaches to filter design. Classical filtering schemes, like H2 filtering and H¥ filtering, are addressed and emerging issues such as robust filtering with constraints on communication channels and signal frequency characteristics are discussed. The text features: · design approaches to robust filters arranged according to varying complexity level and emphasizing robust filtering in the parameter-dependent framework for the first time; · guidance on the use of special realistic phenomena or factors to describe problems more accurately and to improve filtering performance; · a unified linear matrix inequality formulation of design approaches for easy and effective filter design; · demonstration of the techniques of matrix decoupling technique, the generalized Kalman‒Yakubovich‒Popov lemma, the free weighting matrix technique and the delay modelling approach, in robust filtering; · numerous easy-to-follow simulation examples, graphical and tabular illustrations to help the reader understand the filter design approaches developed; and · an account of emerging issues on robust filtering for research to inspire future investigation. Robust Filtering for Uncertain Systems will be of interest to academic researchers specializing in linear, robust and optimal control and estimation and to practitioners working in tracking and network control or signal filtering, detection and estimation. Graduate students learning control and systems theory, signal processing or applied mathematics will also find the book to be a valuable resource.




Robust Control and Filtering of Singular Systems


Book Description

Singular systems have been widely studied in the past two decades due to their extensive applications in modelling and control of electrical circuits, power systems, economics and other areas. Interest has grown recently in the stability analysis and control of singular systems with parameter uncertainties due to their frequent presence in dynamic systems, which is much more complicated than that of state-space systems because controllers must be designed so that the closed-loop system is not only robustly stable, but also regular and impulse-free (in the continuous case) or causal (in the discrete case), while the latter two issues do not arise in the state-space case. This monograph aims to present up-to-date research developments and references on robust control and filtering of uncertain singular systems in a unified matrix inequality setting. It provides a coherent approach to studying control and filtering problems as extensions of state-space systems without the commonly used slow-fast decomposition. It contains valuable reference material for researchers wishing to explore the area of singular systems, and its contents are also suitable for a one-semester graduate course.




Robust Kalman Filtering for Signals and Systems with Large Uncertainties


Book Description

A significant shortcoming of the state space control theory that emerged in the 1960s was its lack of concern for the issue of robustness. However, in the design of feedback control systems, robustness is a critical issue. These facts led to great activity in the research area of robust control theory. One of the major developments of modern control theory was the Kalman Filter and hence the development of a robust version of the Kalman Filter has become an active area of research. Although the issue of robustness in filtering is not as critical as in feedback control (where there is always the issue of instability to worry about), research on robust filtering and state estimation has remained very active in recent years. However, although numerous books have appeared on the topic of Kalman filtering, this book is one of the first to appear on robust Kalman filtering. Most of the material presented in this book derives from a period of research collaboration between the authors from 1992 to 1994. However, its origins go back earlier than that. The first author (LR. P. ) became in terested in problems of robust filtering through his research collaboration with Dr. Duncan McFarlane. At this time, Dr. McFarlane was employed at the Melbourne Research Laboratories ofBHP Ltd. , a large Australian min erals, resources, and steel processing company.




European Control Conference 1995


Book Description

Proceedings of the European Control Conference 1995, Rome, Italy 5-8 September 1995




Non-monotonic Approach to Robust H∞ Control of Multi-model Systems


Book Description

Non-monotonic Approach to Robust H8 Control of Multi-model Systems focuses on robust analysis and synthesis problems for multi-model systems based on the non-monotonic Lyapunov Functionals (LFs) approach that enlarges the stability region and improves control performance. By fully considering the diversity of switching laws, the multi-step time difference, the multi-step prediction, and the expansion of system dimension, the non-monotonic LF can be properly constructed. The focus of this book is placed on the H8 state feedback control, H8 filtering and H8 output feedback control for multi-model systems via a non-monotonic LF approach. The book's authors provide illustrative examples to show the feasibility and efficiency of the proposed methods, along with practical examples that demonstrate the effectiveness and potential of theoretical results. - Offers tools for the analysis and design of control processes where the process can be represented by multi-models - Presents a comprehensive explanation of recent developments in non-monotonic approaches to robust H-infinity control of multi-model systems - Gives numerical examples and simulation results in each chapter to demonstrate engineering potential




Stochastic Control


Book Description

Uncertainty presents significant challenges in the reasoning about and controlling of complex dynamical systems. To address this challenge, numerous researchers are developing improved methods for stochastic analysis. This book presents a diverse collection of some of the latest research in this important area. In particular, this book gives an overview of some of the theoretical methods and tools for stochastic analysis, and it presents the applications of these methods to problems in systems theory, science, and economics.




Neural Information Processing


Book Description

The three volume set LNCS 8834, LNCS 8835, and LNCS 8836 constitutes the proceedings of the 20th International Conference on Neural Information Processing, ICONIP 2014, held in Kuching, Malaysia, in November 2014. The 231 full papers presented were carefully reviewed and selected from 375 submissions. The selected papers cover major topics of theoretical research, empirical study, and applications of neural information processing research. The 3 volumes represent topical sections containing articles on cognitive science, neural networks and learning systems, theory and design, applications, kernel and statistical methods, evolutionary computation and hybrid intelligent systems, signal and image processing, and special sessions intelligent systems for supporting decision, making processes, theories and applications, cognitive robotics, and learning systems for social network and web mining.




System Identification (SYSID '03)


Book Description

The scope of the symposium covers all major aspects of system identification, experimental modelling, signal processing and adaptive control, ranging from theoretical, methodological and scientific developments to a large variety of (engineering) application areas. It is the intention of the organizers to promote SYSID 2003 as a meeting place where scientists and engineers from several research communities can meet to discuss issues related to these areas. Relevant topics for the symposium program include: Identification of linear and multivariable systems, identification of nonlinear systems, including neural networks, identification of hybrid and distributed systems, Identification for control, experimental modelling in process control, vibration and modal analysis, model validation, monitoring and fault detection, signal processing and communication, parameter estimation and inverse modelling, statistical analysis and uncertainty bounding, adaptive control and data-based controller tuning, learning, data mining and Bayesian approaches, sequential Monte Carlo methods, including particle filtering, applications in process control systems, motion control systems, robotics, aerospace systems, bioengineering and medical systems, physical measurement systems, automotive systems, econometrics, transportation and communication systems *Provides the latest research on System Identification *Contains contributions written by experts in the field *Part of the IFAC Proceedings Series which provides a comprehensive overview of the major topics in control engineering.







Dynamic Systems with Time Delays: Stability and Control


Book Description

This book presents up-to-date research developments and novel methodologies to solve various stability and control problems of dynamic systems with time delays. First, it provides the new introduction of integral and summation inequalities for stability analysis of nominal time-delay systems in continuous and discrete time domain, and presents corresponding stability conditions for the nominal system and an applicable nonlinear system. Next, it investigates several control problems for dynamic systems with delays including H(infinity) control problem Event-triggered control problems; Dynamic output feedback control problems; Reliable sampled-data control problems. Finally, some application topics covering filtering, state estimation, and synchronization are considered. The book will be a valuable resource and guide for graduate students, scientists, and engineers in the system sciences and control communities.