Role of the Federal Radiological Monitoring and Assessment Center (FRMAC) Following a Radiological Accident


Book Description

The FRMAC provides a working environment with today's high technology tools (i.e., communication, computers, management procedures, etc.) to assure that the State and CFA decision makers have the best possible information in a timely manner on which to act. The FRMAC planners also recognize an underlying responsibility to continuously document such operations in order to provide the State, the CFA, and the EPA the technical information they will require for long term assessments. In addition, it is fully recognized that information collected and actions taken by the FRMAC will be subjected to the same scrutiny as other parts of the accident and the overall response.




Federal Radiological Monitoring and Assessment Center (FRMAC) Overview of FRMAC Operations


Book Description

In the event of a major radiological emergency, 17 federal agencies with various statutory responsibilities have agreed to coordinate their efforts at the emergency scene under the umbrella of the Federal Radiological Emergency Response plan (FRERP). This cooperative effort will assure the designated Lead Federal Agency (LFA) and the state(s) that all federal radiological assistance fully supports their efforts to protect the public. The mandated federal cooperation ensures that each agency can obtain the data critical to its specific responsibilities. This Overview of the Federal Radiological Monitoring and Assessment Center (FRMAC) Operations describes the FRMAC response activities to a major radiological emergency. It also describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the off-site areas. These off-site areas may include one or more affected states.




Federal Radiological Monitoring and Assessment Center Overview of FRMAC Operations


Book Description

In the event of a major radiological emergency, 17 federal agencies with various statutory responsibilities have agreed to coordinate their efforts at the emergency scene under the umbrella of the Federal Radiological Emergency Response Plan. This cooperative effort will ensure that all federal radiological assistance fully supports their efforts to protect the public. the mandated federal cooperation ensures that each agency can obtain the data critical to its specific responsibilities. This Overview of Federal Radiological Monitoring and Assessment Center (FRMAC) describes the FRMAC response activities to a major radiological emergency. It also describes the federal assets and subsequent operational activities which provide federal radiological monitoring and assessment of the off-site areas.




Federal Radiological Monitoring and Assessment Center Phased Response Operations


Book Description

A Federal Radiological Monitoring and Assessment Center (FRMAC) is established in response to the Lead Federal Agency (LFA) or state request when a major radiological emergency is anticipated of has occurred. The FRMAC becomes a coalition of federal off-site monitoring and assessment activities to assist the LFA, state(s), local, and tribal authorities. State, local, and tribal authorities are invited to co-locate and prioritize monitoring and assessment efforts in the FRMAC. The Department of Energy is tasked by the Federal Radiological Emergency Response Plan to coordinate the FRMAC.







Federal Radiological Monitoring and Assessment Center Analytical Response


Book Description

The Federal Radiological Monitoring and Assessment Center (FRMAC) is authorized by the Federal Radiological Emergency Response Plan to coordinate all off-site radiological response assistance to state and local government s, in the event of a major radiological emergency in the United States. The FRMAC is established by the U.S. Department of Energy, National Nuclear Security Administration, to coordinate all Federal assets involved in conducting a comprehensive program of radiological environmental monitoring, sampling, radioanalysis, quality assurance, and dose assessment. During an emergency response, the initial analytical data is provided by portable field instrumentation. As incident responders scale up their response based on the seriousness of the incident, local analytical assets and mobile laboratories add additional capability and capacity. During the intermediate phase of the response, data quality objectives and measurement quality objectives are more rigorous. These higher objectives will require the use of larger laboratories, with greater capacity and enhanced capabilities. These labs may be geographically distant from the incident, which will increase sample management challenges. This paper addresses emergency radioanalytical capability and capacity and its utilization during FRMAC operations.




The Ability of the United States Federal Radiological Monitoring and Assessment Center to Collect and Disseminate Environmental Measurements During Radiological Emergencies


Book Description

The Federal Radiological Monitoring and Assessment Center (FRMAC) is the United States' response organization for radiological emergencies. The FRMAC is structured as an operations center and employs the combined resources of several federal agencies to respond to any disaster resulting in the release of radioactivity. The mission of the FRMAC is to support state and local authorities in the gathering of environmental data using an array of survey equipment ranging from alpha probes, beta/gamma probes, and high-purity germanium (HPGe) spectroscopy to the gathering of physical samples. Once collected, the data are projected on maps to assist public officials make protective action decisions. In addition to the accumulation of data, it is the legal obligation of the FRMAC to keep archival records of all data points and their actions. During an event, it is conceivable that hundreds to thousands of sample points will be recorded over a relatively short time. It is in the interest of the federal government and public that the information collected be put to the best use as fast as possible. Toward this end, the Remote Sensing Laboratory, working under the direction of the United States Department of Energy's National Nuclear Security Administration, is investigating the use of several technologies that will accelerate data flow from field teams to the FRMAC and, finally, distribution of data to decision makers and the public. Not only can finished data products be viewed through the internet, but the actual collection of data via "real-time" telemetry can be viewed using this same method. Data from the field will be transferred directly to the FRMAC using the MCPD (multi-path communication device). This base station receives the survey information from the field teams via Bluetooth and instantly investigates the best communication pathway to transfer data to the FRMAC. Possible paths include standalone radio, commercial cellular networks (GPRS and CDMA) and satellite. Once inside the FRMAC, this information is transferred to the pertinent divisions for review, data storage, and eventual display on map products. The internet is also a powerful communications tool being utilized by the FRMAC. Using a secure internet connection, field team location and data collection can be viewed live-time by any computer attached to the internet. Similarly, survey information from our fixed-wing aircraft can be viewed while the mission is being flown. All accumulated data and maps generated in the FRMAC are disseminated on a web page through the secure FRMAC web site. Several new data communication processes are being investigated to aid the FRMAC. Each of these provides an important tool to efficiently collect, record and disseminate environmental measurements to FRMAC scientists and decision makers. The ultimate goal of these processes is to improve the flow of protection decisions and information to the public.




Federal Radiological Monitoring and Assessment Center


Book Description

A Federal Radiological Monitoring and Assessment Center (FRMAC) is established in response to a Lead Federal Agency (LFA) or State request when a radiological emergency is anticipated or has occurred. The FRMAC coordinates the off-site monitoring, assessment, and analysis activities during such an emergency. The FRMAC response is divided into three phases. FRMAC Phase 1 is a rapid, initial-response capability that can interface with Federal or State officials and is designed for a quick response time and rapid radiological data collection and assessment. FRMAC Phase 1 products provide an initial characterization of the radiological situation and information on early health effects to officials responsible for making and implementing protective action decisions.




The Role of the LLNL Atmospheric Release Advisory Capability in a FRMAC Response to a Nuclear Power Plant Incident


Book Description

The Federal Radiological Emergency Response Plan (FRERP) can provide several emergency response resources in response to a nuclear power plant (NPP) accident if requested by a state or local agency. The primary FRERP technical resources come from the US Department of Energy's (DOE) Federal Radiological Monitoring and Assessment Center (FRMAC). Most of the FRMAC assets are located at the DOE Remote Sensing Laboratory (RSL) at Nellis Air Force Base, Las Vegas, Nevada. In addition, the primary atmospheric dispersion modeling and dose assessment asset, the Atmospheric Release Advisory Capability (ARAC) is located at Lawrence Livermore National Laboratory (LLNL) in Livermore, California. In the early stages of a response, ARAC relies on its automatic worldwide meteorological data acquisition via the Air Force Global Weather Center (AFGWC). The regional airport data are supplemented with data from on-site towers and sodars and the National Oceanographic & Atmospheric Administration's (NOAA) field-deployable real-time rawinsonde system. ARAC is prepared with three-dimensional regional-scale diagnostic dispersion model to simulate the complex mixed fission product release from a reactor accident. The program has been operational for 18 years and is presently developing its third generation system. The current modernization includes faster central computers, a new site workstation system. The current modernization includes faster central computers, a new site workstation system, improvements in its diagnostic dispersion models, addition of a new hybrid-particle source term, and implementation of a mesoscale prognostic model. AS these new capabilities evolve, they will be integrated into the FRMAC's field-deployable assets.