Saddle-Point Problems and Their Iterative Solution


Book Description

This book provides essential lecture notes on solving large linear saddle-point systems, which arise in a wide range of applications and often pose computational challenges in science and engineering. The focus is on discussing the particular properties of such linear systems, and a large selection of algebraic methods for solving them, with an emphasis on iterative methods and preconditioning. The theoretical results presented here are complemented by a case study on potential fluid flow problem in a real world-application. This book is mainly intended for students of applied mathematics and scientific computing, but also of interest for researchers and engineers working on various applications. It is assumed that the reader has completed a basic course on linear algebra and numerical mathematics.




Model Order Reduction: Theory, Research Aspects and Applications


Book Description

The idea for this book originated during the workshop “Model order reduction, coupled problems and optimization” held at the Lorentz Center in Leiden from S- tember 19–23, 2005. During one of the discussion sessions, it became clear that a book describing the state of the art in model order reduction, starting from the very basics and containing an overview of all relevant techniques, would be of great use for students, young researchers starting in the ?eld, and experienced researchers. The observation that most of the theory on model order reduction is scattered over many good papers, making it dif?cult to ?nd a good starting point, was supported by most of the participants. Moreover, most of the speakers at the workshop were willing to contribute to the book that is now in front of you. The goal of this book, as de?ned during the discussion sessions at the workshop, is three-fold: ?rst, it should describe the basics of model order reduction. Second, both general and more specialized model order reduction techniques for linear and nonlinear systems should be covered, including the use of several related numerical techniques. Third, the use of model order reduction techniques in practical appli- tions and current research aspects should be discussed. We have organized the book according to these goals. In Part I, the rationale behind model order reduction is explained, and an overview of the most common methods is described.







Iterative Methods and Preconditioning for Large and Sparse Linear Systems with Applications


Book Description

This book describes, in a basic way, the most useful and effective iterative solvers and appropriate preconditioning techniques for some of the most important classes of large and sparse linear systems. The solution of large and sparse linear systems is the most time-consuming part for most of the scientific computing simulations. Indeed, mathematical models become more and more accurate by including a greater volume of data, but this requires the solution of larger and harder algebraic systems. In recent years, research has focused on the efficient solution of large sparse and/or structured systems generated by the discretization of numerical models by using iterative solvers.




A Journey through the History of Numerical Linear Algebra


Book Description

This expansive volume describes the history of numerical methods proposed for solving linear algebra problems, from antiquity to the present day. The authors focus on methods for linear systems of equations and eigenvalue problems and describe the interplay between numerical methods and the computing tools available at the time. The second part of the book consists of 78 biographies of important contributors to the field. A Journey through the History of Numerical Linear Algebra will be of special interest to applied mathematicians, especially researchers in numerical linear algebra, people involved in scientific computing, and historians of mathematics.




Wavelet Methods — Elliptic Boundary Value Problems and Control Problems


Book Description

Diese Monographie spannt einen Bogen rund um die aktuelle Thematik Wavelets, um neueste Entwicklungen anhand aufeinander aufbauender Probleme darzustellen und das konzeptuelle Potenzial von Waveletmethoden für Partielle Differentialgleichungen zu demonstrieren.




Numerical Methods for Differential Equations, Optimization, and Technological Problems


Book Description

This book contains the results in numerical analysis and optimization presented at the ECCOMAS thematic conference “Computational Analysis and Optimization” (CAO 2011) held in Jyväskylä, Finland, June 9–11, 2011. Both the conference and this volume are dedicated to Professor Pekka Neittaanmäki on the occasion of his sixtieth birthday. It consists of five parts that are closely related to his scientific activities and interests: Numerical Methods for Nonlinear Problems; Reliable Methods for Computer Simulation; Analysis of Noised and Uncertain Data; Optimization Methods; Mathematical Models Generated by Modern Technological Problems. The book also includes a short biography of Professor Neittaanmäki.




Efficient Preconditioned Solution Methods for Elliptic Partial Differential Equations


Book Description

This e-book presents several research areas of elliptical problems solved by differential equations. The mathematical models explained in this e-book have been contributed by experts in the field and can be applied to a wide range of real life examples. M




Algorithms for Sparse Linear Systems


Book Description

Large sparse linear systems of equations are ubiquitous in science, engineering and beyond. This open access monograph focuses on factorization algorithms for solving such systems. It presents classical techniques for complete factorizations that are used in sparse direct methods and discusses the computation of approximate direct and inverse factorizations that are key to constructing general-purpose algebraic preconditioners for iterative solvers. A unified framework is used that emphasizes the underlying sparsity structures and highlights the importance of understanding sparse direct methods when developing algebraic preconditioners. Theoretical results are complemented by sparse matrix algorithm outlines. This monograph is aimed at students of applied mathematics and scientific computing, as well as computational scientists and software developers who are interested in understanding the theory and algorithms needed to tackle sparse systems. It is assumed that the reader has completed a basic course in linear algebra and numerical mathematics.




Issues in Logic, Operations, and Computational Mathematics and Geometry: 2011 Edition


Book Description

Issues in Logic, Operations, and Computational Mathematics and Geometry: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Logic, Operations, and Computational Mathematics and Geometry. The editors have built Issues in Logic, Operations, and Computational Mathematics and Geometry: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Logic, Operations, and Computational Mathematics and Geometry in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Logic, Operations, and Computational Mathematics and Geometry: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.