Be Safe!


Book Description




Safe Science


Book Description

Recent serious and sometimes fatal accidents in chemical research laboratories at United States universities have driven government agencies, professional societies, industries, and universities themselves to examine the culture of safety in research laboratories. These incidents have triggered a broader discussion of how serious incidents can be prevented in the future and how best to train researchers and emergency personnel to respond appropriately when incidents do occur. As the priority placed on safety increases, many institutions have expressed a desire to go beyond simple compliance with regulations to work toward fostering a strong, positive safety culture: affirming a constant commitment to safety throughout their institutions, while integrating safety as an essential element in the daily work of laboratory researchers. Safe Science takes on this challenge. This report examines the culture of safety in research institutions and makes recommendations for university leadership, laboratory researchers, and environmental health and safety professionals to support safety as a core value of their institutions. The report discusses ways to fulfill that commitment through prioritizing funding for safety equipment and training, as well as making safety an ongoing operational priority. A strong, positive safety culture arises not because of a set of rules but because of a constant commitment to safety throughout an organization. Such a culture supports the free exchange of safety information, emphasizes learning and improvement, and assigns greater importance to solving problems than to placing blame. High importance is assigned to safety at all times, not just when it is convenient or does not threaten personal or institutional productivity goals. Safe Science will be a guide to make the changes needed at all levels to protect students, researchers, and staff.




School Safety and Violence Prevention


Book Description

This timely book presents a data-driven approach to preventing and responding to school violence. As school violence receives increasing attention across the nation, the application of scientific knowledge is critical. For maximum effectiveness, transdisciplinary teams should use school data, logic models, and theories of change to design, implement, and evaluate interventions. Collaboration among key stakeholders is also necessary to address both structural and systemic barriers to success with violence prevention. With concrete methods for promoting safety in primary and secondary educational settings, this book will engage and enable school faculty, counselors, administrators, and other partners to better understand areas of common interest and learn how to work together more effectively.




NSTA Guide to School Science Facilities


Book Description

The National Science Teachers Association, in response to the emergence of new science curricula and the need for updated science facilities in the nation's public schools, convened a task force to develop guidelines for K-12 science facility design and use. This guide, a result of NSTA Task Force on Science Facilities and Equipment, includes information about planning facilities design; budget priorities; space considerations; general room and laboratory design; and furnishings for the laboratory/classroom specifically targeting K-5, middle, and high schools. It is designed to familiarize educators, administrators, and citizens with the stages of the planning process for new and renovated science facilities and provides specific, detailed information on many aspects of the planning and design phases. Additionally, chapters address current trends and future directions in science education and safety, accessibility, and legal guidelines. Appendices include discussions on solar energy for school facilities, equipment needs planning, checklists, a glossary of construction terms, and classroom dimensional considerations. (GR)




Science Education for Everyday Life


Book Description

This book provides a comprehensive overview of humanistic approaches to science. Approaches that connect students to broader human concerns in their everyday life and culture. Glen Aikenhead, an expert in the field of culturally sensitive science education, summarizes major worldwide historical findings; focuses on present thinking; and offers evidence in support of classroom practice. This highly accessible text covers curriculum policy, teaching materials, teacher orientations, teacher education, student learning, culture studies, and future research.




Help! I'm Teaching Middle School Science


Book Description

Like your own personal survival guide, Help IOCOm Teaching Middle School Science is a nontechnical how-to manualOCoespecially for first-year teachers. But even veteran teachers can benefit from the plentiful ideas, examples, and tips on teaching science the way middle-schoolers learn best. The book covers all the basics: .: .; what to do on the first day of school (including icebreaker activities), .; preparing safe and effective lab lessons, .; managing the classroom, .; working with in-school teams as well as parents. But its practicalOCoand encouragingOCoapproach doesnOCOt mean it shortchanges the basics of effective pedagogy. YouOCOll learn: how to handle cooperative learning and assessment; how to help students write effectively and; the importance of modeling for early adolescents."




Safety in Science Education


Book Description




Laboratory Safety for Chemistry Students


Book Description

"...this substantial and engaging text offers a wealth of practical (in every sense of the word) advice...Every undergraduate laboratory, and, ideally, every undergraduate chemist, should have a copy of what is by some distance the best book I have seen on safety in the undergraduate laboratory." Chemistry World, March 2011 Laboratory Safety for Chemistry Students is uniquely designed to accompany students throughout their four-year undergraduate education and beyond, progressively teaching them the skills and knowledge they need to learn their science and stay safe while working in any lab. This new principles-based approach treats lab safety as a distinct, essential discipline of chemistry, enabling you to instill and sustain a culture of safety among students. As students progress through the text, they’ll learn about laboratory and chemical hazards, about routes of exposure, about ways to manage these hazards, and about handling common laboratory emergencies. Most importantly, they’ll learn that it is very possible to safely use hazardous chemicals in the laboratory by applying safety principles that prevent and minimize exposures. Continuously Reinforces and Builds Safety Knowledge and Safety Culture Each of the book’s eight chapters is organized into three tiers of sections, with a variety of topics suited to beginning, intermediate, and advanced course levels. This enables your students to gather relevant safety information as they advance in their lab work. In some cases, individual topics are presented more than once, progressively building knowledge with new information that’s appropriate at different levels. A Better, Easier Way to Teach and Learn Lab Safety We all know that safety is of the utmost importance; however, instructors continue to struggle with finding ways to incorporate safety into their curricula. Laboratory Safety for Chemistry Students is the ideal solution: Each section can be treated as a pre-lab assignment, enabling you to easily incorporate lab safety into all your lab courses without building in additional teaching time. Sections begin with a preview, a quote, and a brief description of a laboratory incident that illustrates the importance of the topic. References at the end of each section guide your students to the latest print and web resources. Students will also find “Chemical Connections” that illustrate how chemical principles apply to laboratory safety and “Special Topics” that amplify certain sections by exploring additional, relevant safety issues. Visit the companion site at http://userpages.wittenberg.edu/dfinster/LSCS/.




Seeing Students Learn Science


Book Description

Science educators in the United States are adapting to a new vision of how students learn science. Children are natural explorers and their observations and intuitions about the world around them are the foundation for science learning. Unfortunately, the way science has been taught in the United States has not always taken advantage of those attributes. Some students who successfully complete their Kâ€"12 science classes have not really had the chance to "do" science for themselves in ways that harness their natural curiosity and understanding of the world around them. The introduction of the Next Generation Science Standards led many states, schools, and districts to change curricula, instruction, and professional development to align with the standards. Therefore existing assessmentsâ€"whatever their purposeâ€"cannot be used to measure the full range of activities and interactions happening in science classrooms that have adapted to these ideas because they were not designed to do so. Seeing Students Learn Science is meant to help educators improve their understanding of how students learn science and guide the adaptation of their instruction and approach to assessment. It includes examples of innovative assessment formats, ways to embed assessments in engaging classroom activities, and ideas for interpreting and using novel kinds of assessment information. It provides ideas and questions educators can use to reflect on what they can adapt right away and what they can work toward more gradually.







Recent Books