Science of Crystal Structures


Book Description

A volume which includes entries on quasicrystals, icosahedral packing, other packing considerations, extended structures, data treatment and data mining is presented by luminaries from the crystallography community. Several of the contributions are from the schools of such trend-setting crystallographers as J. Desmond Bernal and Aleksandr I. Kitaigorodskii. Internationally renowned scientists contributed such as Tom L. Blundell, Johann Jacob Burckhardt, John L. Finney, Jenny P. Glusker, Nobel laureate Herbert A. Hauptman, the 2014 Ewald-Prize winner A. Janner, Aminoff-Prize winner Isabella Karle, Nobel laureate Jerome Karle, Buckley-Prize winner Alan L. Mackay, Ewald-Prize winner David Sayre, Vladimir Shevchenko, and J. Fraser Stoddart. A few frontier topics dominate the selected material. Pioneers of the direct methods describe the phase problem and how it was solved, including the mathematical approach and the utilization of experience with gas-phase electron diffraction. The reviews by Herbert Hauptman, Jerome and Isabella Karle, and David Sayre reach to the present day in assessing the possibilities of X-ray crystallography. Another focus topic is the investigation of systems that are outside the so-called classical system of crystals. They include quasicrystals, imperfect and very small crystals, supramolecular species, crystal structures without lattice, clusters, nanomaterials among others. Application of synchrotron and cryoprotection techniques, the free-electron laser flash technique and others are mentioned in addition to X-ray crystallography. The relationship between structural and materials properties are examined and uncovered. The broader topics of the so-called generalized crystallography include polymers, clusters, polydisperse chain assemblies, and giant icosahedral fullerenes. There are some key contributions related to the structural investigation of biological macromolecules.




Crystal Structures


Book Description

This book presents and discusses those common crystal structures that would be encountered by students taking chemistry, or any subject within which chemistry forms a significant component. With many worked examples and a wide selection of problems with solutions. Includes instructions for making simple stereoviewers and computer programs, in a thorough treatment of binary alloys and three-dimensional packing in molecular solids.




Crystals and Crystal Structures


Book Description

Crystals and Crystal Structures is an introductorytext for students and others who need to understand the subjectwithout necessarily becoming crystallographers. Using the book willenable students to read scientific papers and articles describing acrystal structure or use crystallographic databases with confidenceand understanding. Reflecting the interdisciplinary nature of the subject the bookincludes a variety of applications as diverse as the relationshipbetween physical properties and symmetry, and molecular and proteincrystallography. As well as covering the basics the book containsan introduction to areas of crystallography, such as modulatedstructures and quasicrystals, and protein crystallography, whichare the subject of important and activeresearch. A non-mathematical introduction to the key elements of thesubject Contains numerous applications across a variety ofdisciplines Includes a range of problems and exercises Clear, direct writing style "…the book contains a wealth of information and itfulfils its purpose of providing an interesting and broadintroduction to the terpenes." CHEMISTRY WORLD, February2007




Crystal Structures


Book Description

This classic text is devoted to describing crystal structures, especially periodic structures, and their symmetries. Updated material prepared by author enhances presentation, which can serve as text or reference. 1996 edition.




Symmetry Relationships Between Crystal Structures


Book Description

The book presents the basic information needed to understand and to organize the huge amount of known structures of crystalline solids. Its basis is crystallographic group theory (space group theory), with special emphasis on the relations between the symmetry properties of crystals.




Crystallography


Book Description

A long history -- Symmetry -- Crystal structures -- Diffraction -- Seeing atoms -- Sources of radiation




An Introduction to Composite Materials


Book Description

This edition has been greatly enlarged and updated to provide both scientists and engineers with a clear and comprehensive understanding of composite materials. In describing both theoretical and practical aspects of their production, properties and usage, the book crosses the borders of many disciplines. Topics covered include: fibres, matrices, laminates and interfaces; elastic deformation, stress and strain, strength, fatigue crack propagation and creep resistance; toughness and thermal properties; fatigue and deterioration under environmental conditions; fabrication and applications. Coverage has been increased to include polymeric, metallic and ceramic matrices and reinforcement in the form of long fibres, short fibres and particles. Designed primarily as a teaching text for final-year undergraduates in materials science and engineering, this book will also interest undergraduates and postgraduates in chemistry, physics, and mechanical engineering. In addition, it will be an excellent source book for academic and technological researchers on materials.




Crystal Structure


Book Description

Crystal structures and their associated electronic features play an enormous role in chemistry, constituting the most fundamental basis for analyzing and predicting properties of solid-state materials. In Crystal Structure: Properties, Characterization and Determination, the authors begin by discussing some of the refining models and X-ray data treatments for single-crystals containing heavy atoms, such as transition metals or lanthanides.Valuable information on crystal structures and microstructures may be obtained from the observation of high-resolution images if conditions associated iwth crystal thickness and defocus values are satisfied. These images include information not only on accurate atomic coordinates of cations but also on the ordered arrangements of oxygen atoms and oxygen vacancies.In the concluding study, measurements of the heat capacity of Y3-xErxAl5O12 (x=0,0.6,1.1,3), and mixed Er3-xTmx Al5O12, (x=0,1,2,3) and Er2HoAl5O12 solid solutions were carried out in the temperature range of 1.9 to 220 K in magnetic fields up to 9T. The findings suggest that heat capacity variations at low temperatures were impacted by Schottky anomalies.




Crystal Structure Determination


Book Description

A concise introduction to modern crystal structure determination, emphasizing both the crystallographic background and the successive practical steps. In the theoretical sections, more importance is attached to a good understanding, than to a rigorous mathematical treatment. The most important measuring techniques, including the use of modern area detectors, and the methods of data reduction, structure solution and refinement are discussed from a practical point of view. Special emphasis is put on the ability to recognize and avoid possible errors and traps, and to judge the quality of results.




Structure and Bonding in Crystalline Materials


Book Description

One of the motivating questions in materials research today is, how can elements be combined to produce a solid with specified properties? This book is intended to acquaint the reader with established principles of crystallography and cohesive forces that are needed to address the fundamental relationship between the composition, structure and bonding. Starting with an introduction to periodic trends, the book discusses crystal structures and the various primary and secondary bonding types, and finishes by describing a number of models for predicting phase stability and structure. Containing a large number of worked examples, exercises, and detailed descriptions of numerous crystal structures, this book is primarily intended as an advanced undergraduate or graduate level textbook for students of materials science. It will also be useful to scientists and engineers who work with solid materials.