Science, Seti, and Mathematics


Book Description

Mathematics is as much a part of our humanity as music and art. And it is our mathematics that might be understandable, even familiar, to a distant race and might provide the basis for mutual communication. This book discusses, in a conversational way, the role of mathematics in the search for extraterrestrial intelligence. The author explores the science behind that search, its history, and the many questions associated with it, including those regarding the nature of language and the philosophical/psychological motivation behind this search.




Mathematical SETI


Book Description

This book introduces the Statistical Drake Equation where, from a simple product of seven positive numbers, the Drake Equation is turned into the product of seven positive random variables. The mathematical consequences of this transformation are demonstrated and it is proven that the new random variable N for the number of communicating civilizations in the Galaxy must follow the lognormal probability distribution when the number of factors in the Drake equation is allowed to increase at will. Mathematical SETI also studies the proposed FOCAL (Fast Outgoing Cyclopean Astronomical Lens) space mission to the nearest Sun Focal Sphere at 550 AU and describes its consequences for future interstellar precursor missions and truly interstellar missions. In addition the author shows how SETI signal processing may be dramatically improved by use of the Karhunen-Loève Transform (KLT) rather than Fast Fourier Transform (FFT). Finally, he describes the efforts made to persuade the United Nations to make the central part of the Moon Far Side a UN-protected zone, in order to preserve the unique radio-noise-free environment for future scientific use.




Communication with Extraterrestrial Intelligence (CETI)


Book Description

In April 2010, fifty years to the month after the first experiment in the Search for Extraterrestrial Intelligence (SETI), scholars from a range of disciplines—including astronomy, mathematics, anthropology, history, and cognitive science—gathered at NASA's biennial Astrobiology Science Conference (AbSciCon) for a series of sessions on the search for intelligent life. This book highlights the most recent developments in SETI discussed at that conference, emphasizing the ways that SETI has grown since its inception. The volume covers three broad themes: First, leading researchers examine the latest developments in observational SETI programs, as well as innovative proposals for new search strategies and novel approaches to signal processing. Second, both proponents and opponents of "Active SETI" debate whether humankind should be transmitting intentional signals to other possible civilizations, rather than only listening. Third, constructive proposals for interstellar messages are juxtaposed with critiques that ask whether any meaningful exchange is possible with an independently evolved civilization, given the constraints of contact at interstellar distances, where a round-trip exchange could take centuries or millennia. As we reflect on a half-century of SETI research, we are reminded of the expansion of search programs made possible by technological and conceptual advances. In this spirit of ongoing exploration, the contributors to this book advocate a diverse range of approaches to make SETI increasingly more powerful and effective, as we embark on the next half-century of searching for intelligence beyond Earth.




Combinatorics for Computer Science


Book Description

Useful guide covers two major subdivisions of combinatorics — enumeration and graph theory — with emphasis on conceptual needs of computer science. Each part is divided into a "basic concepts" chapter emphasizing intuitive needs of the subject, followed by four "topics" chapters that explore these ideas in depth. Invaluable practical resource for graduate students, advanced undergraduates, and professionals with an interest in algorithm design and other aspects of computer science and combinatorics. References for Linear Order & for Graphs, Trees, and Recursions. 219 figures.







Evo-SETI


Book Description

This book offers a vision of how evolutionary life processes can be modelled. It presents a mathematical description that can be used not only for the full evolution of life on Earth from RNA to modern human societies, but also the possible evolution of life on exoplanets, thus leading to SETI, the current Search for ExtraTerrestrial Intelligence. The main premise underlying this mathematical theory is that the Geometric Brownian Motion (GBM) can be applied as a key stochastic process to model the evolution of life. In the resulting Evo-SETI Theory, the life of any living thing (a cell, an animal, a human, a civilization of humans, or even an ET civilization) is represented by a b-lognormal, i.e., a lognormal probability density function starting at a precise instant (b, birth) then increasing up to a peak time, then decreasing to senility time and then continuing as a straight line down to the time of death. Using this theory, Claudio Maccone arrives at remarkable hypotheses on the development of life and civilizations, the possibility of extraterrestrial life, and when computers will take over the reins from us humans (Singularity). The book develops the mathematical Evo-SETI Theory by integrating a set of articles that the author has published in various journals on Astrobiology and Astronautical Research.




Evo-SETI


Book Description

This book offers a vision of how evolutionary life processes can be modelled. It presents a mathematical description that can be used not only for the full evolution of life on Earth from RNA to modern human societies, but also the possible evolution of life on exoplanets, thus leading to SETI, the current Search for ExtraTerrestrial Intelligence. The main premise underlying this mathematical theory is that the Geometric Brownian Motion (GBM) can be applied as a key stochastic process to model the evolution of life. In the resulting Evo-SETI Theory, the life of any living thing (a cell, an animal, a human, a civilization of humans, or even an ET civilization) is represented by a b-lognormal, i.e., a lognormal probability density function starting at a precise instant (b, birth) then increasing up to a peak time, then decreasing to senility time and then continuing as a straight line down to the time of death. Using this theory, Claudio Maccone arrives at remarkable hypotheses on the development of life and civilizations, the possibility of extraterrestrial life, and when computers will take over the reins from us humans (Singularity). The book develops the mathematical Evo-SETI Theory by integrating a set of articles that the author has published in various journals on Astrobiology and Astronautical Research.




Extraterrestrial Languages


Book Description

If we send a message into space, will extraterrestrial beings receive it? Will they understand? The endlessly fascinating question of whether we are alone in the universe has always been accompanied by another, more complicated one: if there is extraterrestrial life, how would we communicate with it? In this book, Daniel Oberhaus leads readers on a quest for extraterrestrial communication. Exploring Earthlings' various attempts to reach out to non-Earthlings over the centuries, he poses some not entirely answerable questions: If we send a message into space, will extraterrestrial beings receive it? Will they understand? What languages will they (and we) speak? Is there not only a universal grammar (as Noam Chomsky has posited), but also a grammar of the universe? Oberhaus describes, among other things, a late-nineteenth-century idea to communicate with Martians via Morse code and mirrors; the emergence in the twentieth century of SETI (the search for extraterrestrial intelligence), CETI (communication with extraterrestrial intelligence), and finally METI (messaging extraterrestrial intelligence); the one-way space voyage of Ella, an artificial intelligence agent that can play cards, tell fortunes, and recite poetry; and the launching of a theremin concert for aliens. He considers media used in attempts at extraterrestrial communication, from microwave systems to plaques on spacecrafts to formal logic, and discusses attempts to formulate a language for our message, including the Astraglossa and two generations of Lincos (lingua cosmica). The chosen medium for interstellar communication reveals much about the technological sophistication of the civilization that sends it, Oberhaus observes, but even more interesting is the information embedded in the message itself. In Extraterrestrial Languages, he considers how philosophy, linguistics, mathematics, science, and art have informed the design or limited the effectiveness of our interstellar messaging.







Mathematics for Algorithm and Systems Analysis


Book Description

Discrete mathematics is fundamental to computer science, and this up-to-date text assists undergraduates in mastering the ideas and mathematical language to address problems that arise in the field's many applications. It consists of 4 units of study: counting and listing, functions, decision trees and recursion, and basic concepts of graph theory.