Scientific and Clinical Applications of Magnetic Carriers


Book Description

The discovery of uniform latex particles by polymer chemists of the Dow Chemical Company nearly 50 years ago opened up new exciting fields for scientists and physicians and established many new biomedical applications. Many in vitro diagnostic tests such as the latex agglutination tests, analytical cell and phagocytosis tests have since become rou tine. They were all developed on the basis of small particles bound to biological active molecules and fluorescent and radioactive markers. Further developments are ongoing, with the focus now shifted to applications of polymer particles in the controlled and di rected transport of drugs in living systems. Four important factors make microspheres interesting for in vivo applications: First, biocompatible polymer particles can be used to transport known amounts of drug and re lease them in a controlled fashion. Second, particles can be made of materials which bio degrade in living organisms without doing any harm. Third, particles with modified surfaces are able to avoid rapid capture by the reticuloendothelial system and therefore en hance their blood circulation time. Fourth, combining particles with specific molecules may allow organ-directed targeting.




Advanced Magnetic Nanostructures


Book Description

Advanced magnetic nanostructures is an emerging field in magnetism and nanotechnology, but the literature consists of a rich variety of original papers and parts of reviews and books whose scope is comparatively broad. This calls for a book with specific emphasis on state-of-the-art synthetic methods for fabricating, characterizing and theoretically modeling new magnetic nanostructures. This book is intended to provide a comprehensive overview of the present state of the field. Leading researchers world-wide have contributed a survey of their special ties to guide the reader through the exploding literature in nanomagnetic structures. The focus is on deliberately structured nanomagnets. It includes cluster assembled, self-organized and patterned thin films but excludes, for example, multilayered thin films. We target both industrial and academic researchers in magnetism and related areas, such as nanotechnology, materials science, and theoretical solid-state physics.




Molecular Nuclear Medicine


Book Description

Biochemical transparency of the human body is at the doorstep of advanced technology. Toward this goal the book describes relevant isotopic tracer techniques of nuclear medicine. It deals with quantitatively measuring in vivo biochemical reactions as they occur within homeostatic circuits under control by genes and protein interactions. The text indicates how nuclear medicine can aid clinical researchers and practitioners, human geneticists and pharmacologists in understanding (and affecting) gene-phenotype relationships. Experts give background, techniques and examples in an interdisciplinary approach to regional imaging and in vitro analyses of biochemical reactions.




Frontiers in Materials Science


Book Description

This volume presents contributions by a galaxy of eminent scientists and technologists from the world over in broad spectrum of areas in materials science, providing a global perspective on complex issues of current concern and the direction of research in these areas.




Chemical Reaction in Condensed Phase


Book Description

Chemical Reactions in Condensed Phase - The Quantitative Level




Magnetic Nanoparticles


Book Description

Offering the latest information in magnetic nanoparticle (MNP) research, Magnetic Nanoparticles: From Fabrication to Clinical Applications provides a comprehensive review, from synthesis, characterization, and biofunctionalization to clinical applications of MNPs, including the diagnosis and treatment of cancers.This book, written by some of the mo




Biomedical Applications of Nanoparticles


Book Description

Biomedical Applications of Nanoparticles describes the most interesting and investigated biomedical applications of nanoparticles, emphasizing their therapeutic impact. Progress made in the therapy of severe diseases, such as cancer and difficult infections is strictly correlated to the scientific progress and technological development in the field of materials science. Nanoparticles have numerous therapeutic applications, starting with the design of new drugs, delivery systems, therapeutic materials, and their contribution to the development of preventive strategies. The book highlights the impact of nanoparticles on the therapy of infections, antimicrobial effect and also anti-cancer strategies. Successful examples are given throughout the book, along with analysis in order to improve future outcomes of novel therapies. - Highlights the term nanotherapeutics and presents several classifications of nanotherapeutics from different points-of-view - Presents the recent progress related to nanotherapeutics in the oral cavity - Provides the recent progress in the field of biomedical nanoparticles




Nanoparticulates as Drug Carriers


Book Description

Written by key experts in the field of nanomedicine, this book provides a broad introduction to the important field of nanomedicine and application of nanotechnology for drug delivery. It covers up-to-date information regarding various nanoparticulate drug delivery systems, describes the various opportunities for the application of nanoparticular drug carriers in different areas of clinical medicine, and analyzes already available information on their clinical applications. This book can be used as an advanced textbook by graduate students and young scientists and clinicians at the early stages of their career. It is also suitable for non-experts from related areas of chemistry, biochemistry, molecular biology, biomedical engineering, physiology, experimental and clinical medicine, and pharmaceutical sciences, who are interested in general problems of drug delivery and drug targeting, as well as in more specialized topics of using nanoparticulate-mediated drug delivery approaches in the individual areas of clinical medicine. Prof Torchilin is an expert in Nanomedicine and a recipient of numerous awards including the Lenin Prize in Science & Technology of the former USSR, membership in the European Academy of Sciences, and AAPS Research Achievement Award in Pharmaceutics and Drug Delivery. He served as an Associate Professor of Radiology at Harvard Medical School before joining Northeastern University as the Chairman of the Department of Pharmaceutical Sciences. Sample Chapter(s). Chapter 1: Introduction. Nanocarriers for Drug Delivery: Needs and Requirements (442 KB). Contents: Nanoparticle Flow: Implications for Drug Delivery (A T Florence); Polymer Micelles as Drug Carriers (E V Batrakova et al.); Lipoproteins as Pharmaceutical Carriers (S Liu et al.); Dendrimers as Nanoparticular Drug Carriers (S Svenson & D A Tomalia); Cells and Cell Ghosts as Drug Carriers (J M Lanao & M L Sayalero); Magnetic Nanoparticles as Drug Carriers (U O Hnfeli & M Chastellain); Liposomal Drug Carriers in Cancer Therapy (A A Gabizon); Delivery of Nanoparticles to the Cardiovascular System (B-A Khaw); Nanoparticles for Targeting Lymphatics (W Phillips); Nanoparticular Carriers for Ocular Drug Delivery (A Sanchez & M J Alonso); and other papers. Readership: Graduate students, academics in nanomedicine, clinicians, pharmacologists, pharmacists, bioengineers, researchers in biotechnology and diagnostic imaging."




New Products and New Areas of Bioprocess Engineering


Book Description

Today, ergot alkaloids have found widespread clinical use and more than 50 formulations contain natural or semisynthetic ergot alkaloids. They are used in the treatment of uterine atonia, postpartum bleeding, migraine, orthostatic circulatory disturbances, senile cerebral insufficiency, hypertension, hyp- prolactinemia, acromegaly, and Parkinsonism. Recently, new therapeutic - plications have emerged, e.g., against schizophrenia and for therapeutic usage based on newly discovered antibacterial and cytostatic effects, immunomodu- tory and hypolipemic activity. The broad physiological effects of ergot alkaloids are based mostly on their interactions with neurotransmitter receptors on the cells. The presence of "hidden structures'' resembling some important neu- humoral mediators (e.g., noradrenaline, serotonin, dopamine) in the molecules of ergot alkaloids could explain their interactions with these receptors [1]. Ergot alkaloids are produced by the filamentous fungi of the genus, Claviceps (e.g., Claviceps purpurea - Ergot, Mutterkorn). On the industrial scale these alkaloids were produced mostly by parasitic cultivation (field production of the ergot) till the end of the 1970s. Today this uneconomic method has been - placed by submerged fermentation. Even after a century of research on ergot alkaloids the search still continues for new, more potent and more selective ergot alkaloid derivatives




Nanomaterials for Medical Diagnosis and Therapy


Book Description

Following an overview of nanotechnologies for diagnostic purposes, this book goes on to look at nanoparticle-based magnetic resonance, molecular and other imaging applications, as well as the potential roles of carbon nanotubes and bionanoparticles in biomedical applications. The book's main focus is on drug delivery systems based on nonporous and nanosize materials, solid lipid and polymeric nanoparticles, intelligent hydrogels, core-shell nanoparticles, and nanocapsules, rounded off by a discussion of their biomedical applications. The final part of this volume covers such biomedical strategies as gene therapy, synthetic gene-transfer vectors and targeted delivery.