Selected Topics in Magnetism


Book Description




Magnetism and Magnetic Materials


Book Description

An essential textbook for graduate courses on magnetism and an important source of practical reference data.




Selected Topics in Superconductivity


Book Description

Selected Topics in Superconductivity, reflects the high level of activity in the discovery of high-Tc superconductivity. Out of the 19 articles that it has, a fairly good number of them discuss several important and fundamental aspects of the high-Tc superconductivity. Some of the issues related to the phenomenon of superconductivity in general are discussed in a few of the manuscripts. The remaining articles deal with superconductivity in unconventional and highly correlated metals




Selected Topics In Nanomedicine


Book Description

Nanomedicine consists of the use of nanotechnology and nanobiotechnology in medicine. There have been extensive developments in the area of nanomedicine. The scope of this book is first to discuss the origin of nanomedicine. Following this, instead of a general overview of the whole area, 24 chapters on selected topics of important areas are described in detail. Authors are selected from around the world to give a representative and international view of the activities in the area of nanomedicine.




Magnetism and Metallurgy of Soft Magnetic Materials


Book Description

DIVDetailed theoretical study and a practical survey for solid-state physicists, engineers, graduate students. Ferromagnetism and ferrimagnetism, magnetization and domain structure, much more. 227 figures. /div




Magnetism in Condensed Matter


Book Description

An understanding of the quantum mechanical nature of magnetism has led to the development of new magnetic materials which are used as permanent magnets, sensors, and information storage. Behind these practical applications lie a range of fundamental ideas, including symmetry breaking, order parameters, excitations, frustration, and reduced dimensionality. This superb new textbook presents a logical account of these ideas, staring from basic concepts in electromagnetsim and quantum mechanics. It outlines the origin of magnetic moments in atoms and how these moments can be affected by their local environment inside a crystal. The different types of interactions which can be present between magnetic moments are described. The final chapters of the book are devoted to the magnetic properties of metals, and to the complex behaviour which can occur when competing magnetic interactions are present and/or the system has a reduced dimensionality. Throughout the text, the theorectical principles are applied to real systems. There is substantial discussion of experimental techniques and current reserach topics. The book is copiously illustrated and contains detailed appendices which cover the fundamental principles.




Selected Topics in Nanoscience and Nanotechnology


Book Description

Selected Topics in Nanoscience and Nanotechnology contains a collection of papers in the subfields of scanning probe microscopy, nanofabrication, functional nanoparticles and nanomaterials, molecular engineering and bionanotechnology. Written by experts in their respective fields, it is intended for a general scientific readership who may be non-specialists in these subjects, but who want a reasonably comprehensive introduction to them. This volume is also suitable as resource material for a senior undergraduate or introductory graduate course in nanoscience and nanotechnology.The review articles have been published in journal COSMOS Vol 3 & 4.




Magnetism


Book Description

This textbook is aimed at engineering students who are likely to come across magnetics applications in their professional practice. Whether designing lithography equipment containing ferromagnetic brushes, or detecting defects in aeronautics, some basic knowledge of 21st century magnetism is needed. From the magnetic tape on the pocket credit card to the read head in a personal computer, people run into magnetism in many products. Furthermore, in a variety of disciplines tools of the trade exploit magnetic principles, and many interdisciplinary laboratory research areas cross paths with magnetic phenomena that may seem mysterious to the untrained mind. Therefore, this course offers a broad coverage of magnetism topics encountered more often in this millenium, revealing key concepts on which many practical applications rest. Some traditional subjects in magnetism are discussed in the first half of the book, followed by areas likely to spark the curiosity of those more interested in today’s technological achievements. Although sometimes some aspects may seem difficult to comprehend at first, bibliography directs the reader to appropriate further study. Throughout the chapters, the student is encouraged to discover the not-so-obvious associations between different magnetics topics, a task that will prove to be at the very least rewarding.




Magnetism


Book Description

Contents: Spin Fluctuations in Heisenberg Magnets: Dynamic Critical Phenomena and Excitations in Quasi-Periodic Systems (S W Lovesey)Quenching of Spin Fluctuations by High Magnetic Fields (K Ikeda et al.)Kondo Effect and Heavy Fermions (B Coqblin et al.)Magnetic Interactions in Correlated Electron Systems: High Pressure Investigations (J D Thompson)Hall Effect in Heavy Fermion and Mixed Valence Systems (A Hamzić & A Fert)Magnetic Properties of Uranium Based 1-2-2 Intermetallics (T Endstra et al.)Inelastic Magnetic Excitations in Anomalous Rare Earth Intermetallics (E Holland-Moritz)Neutron Scattering Studies of Magnetic Properties of Actinide Systems (G H Lander & G Aeppli)Magnetic Properties of Heavy Fermion Systems — As Studied by μSR-Spectroscopy (A Schenck)Re-Entrant Spin-Glasses: Do They Exist? (B R Coles & S B Roy)Insulating Spin Glass Systems (J K Srivastava)Nuclear Magnetism in Metals and Alloys (S Ramakrishnan & G Chandra) Readership: Solid-state physicists and chemists. keywords:




Magnetism


Book Description

This text book gives a comprehensive account of magnetism, one of the oldest yet most vibrant fields of physics. It spans the historical development, the physical foundations and the continuing research underlying the subject. The book covers both the classical and quantum mechanical aspects of magnetism and novel experimental techniques. Perhaps uniquely, it discusses spin transport and magnetization dynamics phenomena associated with atomically and spin engineered nano-structures against the backdrop of spintronics and magnetic storage and memory applications. The book is for students, and serves as a reference for scientists in academia and research laboratories.