Selected Topics of the Theory of Chemical Elementary Processes


Book Description

Introduction 1 1. 2. Basic Concepts and Phenomenological Description 6 2.1. Separation of the Center-of-Mass Motion 8 2.2. Separation of Electronic and Nuclear Motions. Interaction Potentials (Potential-Energy Surfaces) 11 2.2.1. Heuristic Considerations 11 2.2.2. Born-Oppenheimer Separation. Adiabatic Approximation, 16 Present State of Potential-Energy-Burface 2.2.3. Calculations 23 2.3. Scattering Channels ~6 2.4. Classification of Elementary Processes. Microscopic Mechanism 27 D.ynamics of Atomic and Molecular Collisions: 3. Electronically Adiabatic Processes 32 Classical Approach 3.1. 33 Some Arguments for the Reliability of the Classical Approach 33 Atom-Atom Collisions. Elastic Scattering 34 Quasiclassical Treatment of Elementary Processes in Triatomic Systems: Inelastic and Reactive Scattering 44 IV Examples of Results of Trajectory Calculations 59 3.1.4. 64 Elements of Quantum-Mechanical Methods 3.2. Correspondence of Classical and Quantum 3.2.1. 64 Mechanical Theories Time-Dependent Scattering Theory 71 3.2.2. Stationary Scattering Theory 77 3.2.3. One-Dimensional Scattering 78 3.2.3.1 • Three-Dimensional Elastic Scattering 83 3.2.3.2. Rearrangement Scattering (Reactions) 85 3.2.3.3. Examples of Quantum-Mechanical Calculations 3.2.4.




Elementary Principles of Chemical Processes


Book Description

Elementary Principles of Chemical Processes, 4th Edition Student International Version prepares students to formulate and solve material and energy balances in chemical process systems and lays the foundation for subsequent courses in chemical engineering. The text provides a realistic, informative, and positive introduction to the practice of chemical engineering.




Elementary Chemical Reactor Analysis


Book Description

Elementary Chemical Reactor Analysis focuses on the processes, reactions, methodologies, and approaches involved in chemical reactor analysis, including stoichiometry, adiabatic reactors, external mass transfer, and thermochemistry. The publication first takes a look at stoichiometry and thermochemistry and chemical equilibrium. Topics include heat of formation and reaction, measurement of quantity and its change by reaction, concentration changes with a single reaction, rate of generation of heat by reaction, and equilibrium of simultaneous and heterogeneous reactions. The manuscript then offers information on reaction rates and the progress of reaction in time. Discussions focus on systems of first order reactions, concurrent reactions of low order, general irreversible reaction, variation of reaction rate with extent and temperature, and heterogeneous reaction rate expressions. The book examines the interaction of chemical and physical rate processes, continuous flow stirred tank reactor, and adiabatic reactors. Concerns include multistage adiabatic reactors, adiabatic stirred tank, stability and control of the steady state, mixing in the reactor, effective reaction rate expressions, and external mass transfer. The publication is a dependable reference for readers interested in chemical reactor analysis.




Theory of Chemical Reaction Dynamics


Book Description

Proceedings of the NATO Advanced Research Workshop, held in Balatonföldvár, Hungary, 8-12 June 2003




Selected Topics in Chemistry


Book Description

Chemistry is a branch of science which deals with the preparation, properties, structures and composition of substances. The prominence of chemistry is well known. Knowledge of chemistry will help to understand the natural processes, geochemical concepts, biochemical reactions, and environment. Developments in chemistry lead the discovery of immense number of chemical compounds with great applications. Broadly, chemistry can be classified into three braches viz., inorganic, organic and physical chemistry. Inorganic chemistry deals the preparation, properties and structure of all elements and their compounds except carbon and its compounds. Organic chemistry studies the synthesis, structure and properties of organic compounds. Physical chemistry concerned the physical property of chemical compounds.




Many-Body Methods in Quantum Chemistry


Book Description

The present volume contains the text of the invited lectures presented at the Symposium on Many Body Methods in Quantum Chemistry, held on the campus of Tel Aviv University in August 1988. The Symposium was a satellite meeting of the Sixth International Congress on Quantum Chemistry held in Jerusalem. The development and application of many-body methods in Quantum chemistry have been on the rise for a number of years. This is therefore a good time for an interim report on the state of the field. It is hoped that such a report is hereby provided, though it may not be complete. The Symposium was held under the auspices of Tel Aviv University, Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry. Other sponsors were the Israeli Academy of Sciences and Humanities, and the Israeli Ministry of Science and Development. Many thanks go to all of them. Finally, I would like to thank all the speakers and participants for making the meeting the enjoyable and (I hope) profitable experience it was. Tel Aviv, Israel Uzi Kaldor TESTS AND APPLICATIONS OF COMPLETE MODEL SPACE QUASIDEGENERATE MANY-BODY PERTURBATION THEORY FOR MOLECULES Karl F. Freed The James Franck Institute and Department of Chemistry The University of Chicago, Chicago, DUnois 60637 U.S.A.




Pattern Recognition in Chemistry


Book Description

Analytical chemistry of the recent years is strongly influenced by automation. Data acquisition from analytica~ instruments - and some times also controlling of instruments - by a computer are principally solved since many years. Availability of microcomputers made these tasks also feasible from the economic point of view. Besides these basic applications of computers in chemical measurements scientists developed computer programs for solving more sophisticated problems for which some kind of "intelligence" is usually supposed to be necessary. Harm less numerical experiments on this topic led to passionate discussions about the theme "which jobs cannot be done by a computer but only by human brain ?~. If this question is useful at all it should not be ans wered a priori. Application of computers in chemistry is a matter of utility, sometimes it is a social problem, but it is never a question of piety for the human brain. Automated instruments and the necessity to work on complex pro blems enhanced the development of automatic methods for the reduction and interpretation of large data sets. Numerous methods from mathematics, statistics, information theory, and computer science have been exten sively investigated for the elucidation of chemical information; a new discipline "chemometrics" has been established. Three different approaches have been used for computer-assisted interpretations of chemical data. 1. Heuristic methods try to formu late computer programs working in a similar way as a chemist would solve the problem. 2.




Radiation-Chemical Processes in Solid Phase


Book Description

Unlike many other references, Radiation-Chemical Processes in Solid Phase analyzes experimental data on radiolysis in terms of solid-state physics. It traces the effect exerted by media from primary processes of radiation-substance interaction to final products. The authors consider the main chemically active elementary excitations arising under irradiation of solids and discuss the mechanisms of chemical reactions induced by them. They present the general principles of solid-state and molecular physics, and cover numerous radiation-chemical processes.




Collision Theory and Statistical Theory of Chemical Reactions


Book Description

Since the discovery of quantum mechanics,more than fifty years ago,the theory of chemical reactivity has taken the first steps of its development. The knowledge of the electronic structure and the properties of atoms and molecules is the basis for an un derstanding of their interactions in the elementary act of any chemical process. The increasing information in this field during the last decades has stimulated the elaboration of the methods for evaluating the potential energy of the reacting systems as well as the creation of new methods for calculation of reaction probabili ties (or cross sections) and rate constants. An exact solution to these fundamental problems of theoretical chemistry based on quan tum mechanics and statistical physics, however, is still impossible even for the simplest chemical reactions. Therefore,different ap proximations have to be used in order to simplify one or the other side of the problem. At present, the basic approach in the theory of chemical reactivity consists in separating the motions of electrons and nu clei by making use of the Born-Oppenheimer adiabatic approximation to obtain electronic energy as an effective potential for nuclear motion. If the potential energy surface is known, one can calculate, in principle, the reaction probability for any given initial state of the system. The reaction rate is then obtained as an average of the reaction probabilities over all possible initial states of the reacting ~artic1es. In the different stages of this calculational scheme additional approximations are usually introduced.




Second-Order Phase Transitions and the Irreducible Representation of Space Groups


Book Description

The lecture notes presented in this volume were developed over a period of time that originated with the investigation of a research problem, the distortion from NiAs-type to MnP-type, the group-theoretical implications of which were investigated in collaboration with Professors F. Jellinek and C. Haas of the Laboratory for Inorganic Chemistry at the University of Groningen during the 1973-1974 year. This distortion provides the major example that is worked through in the notes. The subject matter of the notes has been incorporated in part in the lectures of a course in Solid State Chemistry taught several times at Iowa State University, and formed the basis of a series of lectures presented at the Max-Planck Institute for Solid State Research in Stuttgart during 1981- 19821 and as part of a Solid State Chemistry course taught during the spring of 1982 at Arizona State University in Tempe. I wish here to express my gratitude to the Max-Planck Institute for Solid State Research and to Arizona State University for the opportunity and support they provided during the time I was developing and writing the lecture notes of this volume. I wish also to thank the many colleagues and students who have offered comments and suggestions that have improved the accuracy and readability of the notes, and who have provided stimulation through discussion of the ideas presented here. am especially indebted to Professors C. Haas and F.