Selected Works in Bioinformatics


Book Description

This book consists of nine chapters covering a variety of bioinformatics subjects, ranging from database resources for protein allergens, unravelling genetic determinants of complex disorders, characterization and prediction of regulatory motifs, computational methods for identifying the best classifiers and key disease genes in large-scale transcriptomic and proteomic experiments, functional characterization of inherently unfolded proteins/regions, protein interaction networks and flexible protein-protein docking. The computational algorithms are in general presented in a way that is accessible to advanced undergraduate students, graduate students and researchers in molecular biology and genetics. The book should also serve as stepping stones for mathematicians, biostatisticians, and computational scientists to cross their academic boundaries into the dynamic and ever-expanding field of bioinformatics.




Walter Gilbert


Book Description

This book commemorates the eclectic intellectual life of scientist and artist Walter Gilbert. It presents all of his most influential works throughout his scientific career. His scientific explorations covered a broad spectrum of fields: theoretical physics; molecular biology, from finding messenger RNA to elucidating the regulation of the lac operon to understanding DNA replication; gene evolution and origin of life; genomics; bioinformatics; and beyond. He created widely used concepts such as "Exon", "Intron" and "RNA World". Eleven reflective essays by Gilbert are included for the first time, discussing both his scientific studies and anecdotes from his own life. These firsthand accounts record the historical and intellectual contexts for his most monumental scientific discoveries, including his Nobel Prize-winning sequencing method. Memorial chapters, contributed by Gilbert Laboratory alumni, describe the passion, ambition, and efforts of Gilbert and several generations of young scientists under his leadership. Finally, the book collects a few fine pieces of artwork created by Gilbert in recent years. It documents a life of genius and creativity that could inspire others for years to come.




BIOS Instant Notes in Bioinformatics


Book Description

The second edition of Instant Notes in Bioinformatics introduced the readers to the themes and terminology of bioinformatics. It is divided into three parts: the first being an introduction to bioinformatics in biology; the second covering the physical, mathematical, statistical and computational basis of bioinformatics, using biological examples wherever possible; the third describing applications, giving specific detail and including data standards. The applications covered are sequence analysis and annotation, transcriptomics, proteomics, metabolite study, supramolecular organization, systems biology and the integration of-omic data, physiology, image analysis, and text analysis.




Essential Bioinformatics


Book Description

Essential Bioinformatics is a concise yet comprehensive textbook of bioinformatics, which provides a broad introduction to the entire field. Written specifically for a life science audience, the basics of bioinformatics are explained, followed by discussions of the state-of-the-art computational tools available to solve biological research problems. All key areas of bioinformatics are covered including biological databases, sequence alignment, genes and promoter prediction, molecular phylogenetics, structural bioinformatics, genomics and proteomics. The book emphasizes how computational methods work and compares the strengths and weaknesses of different methods. This balanced yet easily accessible text will be invaluable to students who do not have sophisticated computational backgrounds. Technical details of computational algorithms are explained with a minimum use of mathematical formulae; graphical illustrations are used in their place to aid understanding. The effective synthesis of existing literature as well as in-depth and up-to-date coverage of all key topics in bioinformatics make this an ideal textbook for all bioinformatics courses taken by life science students and for researchers wishing to develop their knowledge of bioinformatics to facilitate their own research.




Computational Intelligence Methods for Bioinformatics and Biostatistics


Book Description

This book constitutes the thoroughly refereed post-conference proceedings of the 14th International Meeting on Computational. Intelligence Methods for Bioinformatics and Biostatistics, CIBB 2017, held in Cagliari, Italy, in September 2017. The 19 revised full papers presented were carefully reviewed and selected from 44 submissions. The papers deal with the application of computational intelligence to open problems in bioinformatics, biostatistics, systems and synthetic biology, medical informatics, computational approaches to life sciences in general.




Bioinformatics


Book Description

"In this book, Andy Baxevanis and Francis Ouellette . . . haveundertaken the difficult task of organizing the knowledge in thisfield in a logical progression and presenting it in a digestibleform. And they have done an excellent job. This fine text will makea major impact on biological research and, in turn, on progress inbiomedicine. We are all in their debt." —Eric Lander from the Foreword Reviews from the First Edition "...provides a broad overview of the basic tools for sequenceanalysis ... For biologists approaching this subject for the firsttime, it will be a very useful handbook to keep on the shelf afterthe first reading, close to the computer." —Nature Structural Biology "...should be in the personal library of any biologist who usesthe Internet for the analysis of DNA and protein sequencedata." —Science "...a wonderful primer designed to navigate the novice throughthe intricacies of in scripto analysis ... The accomplished genesearcher will also find this book a useful addition to theirlibrary ... an excellent reference to the principles ofbioinformatics." —Trends in Biochemical Sciences This new edition of the highly successful Bioinformatics:A Practical Guide to the Analysis of Genes and Proteinsprovides a sound foundation of basic concepts, with practicaldiscussions and comparisons of both computational tools anddatabases relevant to biological research. Equipping biologists with the modern tools necessary to solvepractical problems in sequence data analysis, the Second Editioncovers the broad spectrum of topics in bioinformatics, ranging fromInternet concepts to predictive algorithms used on sequence,structure, and expression data. With chapters written by experts inthe field, this up-to-date reference thoroughly covers vitalconcepts and is appropriate for both the novice and the experiencedpractitioner. Written in clear, simple language, the book isaccessible to users without an advanced mathematical or computerscience background. This new edition includes: All new end-of-chapter Web resources, bibliographies, andproblem sets Accompanying Web site containing the answers to the problems,as well as links to relevant Web resources New coverage of comparative genomics, large-scale genomeanalysis, sequence assembly, and expressed sequence tags A glossary of commonly used terms in bioinformatics andgenomics Bioinformatics: A Practical Guide to the Analysis of Genesand Proteins, Second Edition is essential reading forresearchers, instructors, and students of all levels in molecularbiology and bioinformatics, as well as for investigators involvedin genomics, positional cloning, clinical research, andcomputational biology.




Statistical Methods in Bioinformatics


Book Description

Advances in computers and biotechnology have had a profound impact on biomedical research, and as a result complex data sets can now be generated to address extremely complex biological questions. Correspondingly, advances in the statistical methods necessary to analyze such data are following closely behind the advances in data generation methods. The statistical methods required by bioinformatics present many new and difficult problems for the research community. This book provides an introduction to some of these new methods. The main biological topics treated include sequence analysis, BLAST, microarray analysis, gene finding, and the analysis of evolutionary processes. The main statistical techniques covered include hypothesis testing and estimation, Poisson processes, Markov models and Hidden Markov models, and multiple testing methods. The second edition features new chapters on microarray analysis and on statistical inference, including a discussion of ANOVA, and discussions of the statistical theory of motifs and methods based on the hypergeometric distribution. Much material has been clarified and reorganized. The book is written so as to appeal to biologists and computer scientists who wish to know more about the statistical methods of the field, as well as to trained statisticians who wish to become involved with bioinformatics. The earlier chapters introduce the concepts of probability and statistics at an elementary level, but with an emphasis on material relevant to later chapters and often not covered in standard introductory texts. Later chapters should be immediately accessible to the trained statistician. Sufficient mathematical background consists of introductory courses in calculus and linear algebra. The basic biological concepts that are used are explained, or can be understood from the context, and standard mathematical concepts are summarized in an Appendix. Problems are provided at the end of each chapter allowing the reader to develop aspects of the theory outlined in the main text. Warren J. Ewens holds the Christopher H. Brown Distinguished Professorship at the University of Pennsylvania. He is the author of two books, Population Genetics and Mathematical Population Genetics. He is a senior editor of Annals of Human Genetics and has served on the editorial boards of Theoretical Population Biology, GENETICS, Proceedings of the Royal Society B and SIAM Journal in Mathematical Biology. He is a fellow of the Royal Society and the Australian Academy of Science. Gregory R. Grant is a senior bioinformatics researcher in the University of Pennsylvania Computational Biology and Informatics Laboratory. He obtained his Ph.D. in number theory from the University of Maryland in 1995 and his Masters in Computer Science from the University of Pennsylvania in 1999. Comments on the first edition: "This book would be an ideal text for a postgraduate course...[and] is equally well suited to individual study.... I would recommend the book highly." (Biometrics) "Ewens and Grant have given us a very welcome introduction to what is behind those pretty [graphical user] interfaces." (Naturwissenschaften) "The authors do an excellent job of presenting the essence of the material without getting bogged down in mathematical details." (Journal American Statistical Association) "The authors have restructured classical material to a great extent and the new organization of the different topics is one of the outstanding services of the book." (Metrika)




Bioinformatics Basics


Book Description

Every researcher in genomics and proteomics now has access to public domain databases containing literally billions of data entries. However, without the right analytical tools, and an understanding of the biological significance of the data, cataloging and interpreting the molecular evolutionary processes buried in those databases is difficult, if




Structural Bioinformatics


Book Description

The Beauty of Protein Structures and the Mathematics behind Structural BioinformaticsProviding the framework for a one-semester undergraduate course, Structural Bioinformatics: An Algorithmic Approach shows how to apply key algorithms to solve problems related to macromolecular structure.Helps Students Go Further in Their Study of Structural Biolog




Microarray Bioinformatics


Book Description

This book is a comprehensive guide to all of the mathematics, statistics and computing you will need to successfully operate DNA microarray experiments. It is written for researchers, clinicians, laboratory heads and managers, from both biology and bioinformatics backgrounds, who work with, or who intend to work with microarrays. The book covers all aspects of microarray bioinformatics, giving you the tools to design arrays and experiments, to analyze your data, and to share your results with your organisation or with the international community. There are chapters covering sequence databases, oligonucleotide design, experimental design, image processing, normalisation, identifying differentially expressed genes, clustering, classification and data standards. The book is based on the highly successful Microarray Bioinformatics course at Oxford University, and therefore is ideally suited for teaching the subject at postgraduate or professional level.