Design for Utopia


Book Description




Fourier: 'The Theory of the Four Movements'


Book Description

This remarkable book, written soon after the French Revolution, has traditionally been considered one of the founding documents in the history of socialism. It introduces the best-known and most extraordinary utopia written in the last two centuries. Charles Fourier was among the first to formulate a right to a minimum standard of life. His radical approach involved a systematic critique of work, marriage and patriarchy, together with a parallel right to a sexual minimum. He also proposed a comprehensive alternative to the Christian religion. Finally, through the medium of a bizarre and extraordinary cosmology, Fourier argued that the poor state of the planet is the result of the evil practices of civilisation. Translated into English, this classic text will be of particular interest to students and scholars of the history of sexuality and feminism, political thought and socialism.




Fourier Analysis


Book Description

Fourier analysis is a subject that was born in physics but grew up in mathematics. Now it is part of the standard repertoire for mathematicians, physicists and engineers. This diversity of interest is often overlooked, but in this much-loved book, Tom Körner provides a shop window for some of the ideas, techniques and elegant results of Fourier analysis, and for their applications. These range from number theory, numerical analysis, control theory and statistics, to earth science, astronomy and electrical engineering. The prerequisites are few (a reader with knowledge of second- or third-year undergraduate mathematics should have no difficulty following the text), and the style is lively and entertaining. This edition of Körner's 1989 text includes a foreword written by Professor Terence Tao introducing it to a new generation of fans.




Joseph Fourier, 1768-1830


Book Description

Beyond being the first substantial publication on Fourier, this work contains the text of Fourier's seminal paper of 1807 on the propagation of heat, marking the first time it has ever appeared in print. This paper incorporates many of the mathematical creations on which Fourier's fame rests, including derivation of the diffusion equation, the separation of the treatment of surface phenomena from internal phenomena, the use of boundary values and initial conditions, and the development of "Fourier series" and the so-called "Bessel functions."When submitted to the examiners of the Institut de France, the originality of the paper and the surprising nature of some of its mathematical revelations caused great controversy, and it was denied publication both in 1807 and in later years. Fourier had the support, among the examiners, of Laplace and Monge, but Lagrange was adamantly in opposition, so that Fourier's work did not appear in print until 1822, reworked into book form.Fourier's mathematical discoveries are intimately related to his interest in the solution of physical problems and their experimental verification. The mathematical methods he developed in connection with heat diffusion apply to physical situations far beyond the boundaries of this area. Generally, Fourier may be credited with one of the first major extensions of mathematical physics beyond the applications of Newton's laws of motion and universal gravitation.The opening biographical chapter of this book follows Fourier's career up to the submission of the 1807 paper, and the two closing chapters take up his life and work from that point on. Fourier had strong political motivations and spent much of his life in the public service. These chapters trace his political difficulties, both before and after 1807, when he was the prefect of a department of France and was subjected to the dislocations of Napoleon's ups and downs. These chapters also describe aspects of the turbulent but productive development of French science from the Revolution to 1830.The core of the book presents the paper of 1807 in its original French and with the original notation. Grattan-Guinness has divided the paper into sections by the sequence of the problems taken up, and he introduces and, where necessary, closes each section with commentary relevant to Fourier's later work in these areas. The paper itself (cllows the chronology of Fourier's discoveries, and among the topics treated are, in this order: heat diffusion between disjoint bodies and in continuous bodies; the appearance of partial differential equations; the special solution for the lamina; sine and cosine series for an arbitrary function; reflections on the vibrating string problem; solution for the annulus; the full Fourier series for an arbitrary function; reflections on n-body analysis; solution for the sphere; solution for the cylinder; steady-state diffusion in the rectangular prism; time-dependent diffusion in the cube; and Fourier's experimental work.




The Teaching of Charles Fourier


Book Description




Chebyshev and Fourier Spectral Methods


Book Description

Completely revised text focuses on use of spectral methods to solve boundary value, eigenvalue, and time-dependent problems, but also covers Hermite, Laguerre, rational Chebyshev, sinc, and spherical harmonic functions, as well as cardinal functions, linear eigenvalue problems, matrix-solving methods, coordinate transformations, methods for unbounded intervals, spherical and cylindrical geometry, and much more. 7 Appendices. Glossary. Bibliography. Index. Over 160 text figures.




Charles Fourier


Book Description

This is a full-scale intellectual biography of the French utopian socialist thinker, Chales Fourier (1772 - 1837), one of the great social critics of the nineteenth century. It is certain to become an invaluable resource for all students of modern European intellectual history. This title is part of UC Press's Voices Revived program, which commemorates University of California Press's mission to seek out and cultivate the brightest minds and give them voice, reach, and impact. Drawing on a backlist dating to 1893, Voices Revived makes high-quality, peer-reviewed scholarship accessible once again using print-on-demand technology. This title was originally published in 1986.




Fourier Series and Orthogonal Functions


Book Description

This incisive text deftly combines both theory and practical example to introduce and explore Fourier series and orthogonal functions and applications of the Fourier method to the solution of boundary-value problems. Directed to advanced undergraduate and graduate students in mathematics as well as in physics and engineering, the book requires no prior knowledge of partial differential equations or advanced vector analysis. Students familiar with partial derivatives, multiple integrals, vectors, and elementary differential equations will find the text both accessible and challenging. The first three chapters of the book address linear spaces, orthogonal functions, and the Fourier series. Chapter 4 introduces Legendre polynomials and Bessel functions, and Chapter 5 takes up heat and temperature. The concluding Chapter 6 explores waves and vibrations and harmonic analysis. Several topics not usually found in undergraduate texts are included, among them summability theory, generalized functions, and spherical harmonics. Throughout the text are 570 exercises devised to encourage students to review what has been read and to apply the theory to specific problems. Those preparing for further study in functional analysis, abstract harmonic analysis, and quantum mechanics will find this book especially valuable for the rigorous preparation it provides. Professional engineers, physicists, and mathematicians seeking to extend their mathematical horizons will find it an invaluable reference as well.




Fourier Series


Book Description

Classic graduate-level text discusses the Fourier series in Hilbert space, examines further properties of trigonometrical Fourier series, and concludes with a detailed look at the applications of previously outlined theorems. 1956 edition.




Recent Books