Self-Consistent Methods for Composites


Book Description

This unique book is dedicated to the application of self-consistent methods to the solution of static and dynamic problems of the mechanics and physics of composite materials. The effective elastic, electric, dielectric, thermo-conductive and other properties of composite materials reinforced by ellipsoidal, spherical multi-layered inclusions, thin hard and soft inclusions, short fibers and unidirected multi-layered fibers are considered. The book contains many concrete results.







Polymer Composites, Macro- and Microcomposites


Book Description

The first systematic reference on the topic with an emphasis on the characteristics and dimension of the reinforcement. This first of three volumes, authored by leading researchers in the field from academia, government, industry, as well as private research institutions around the globe, focuses on macro and micro composites. Clearly divided into three sections, the first offers an introduction to polymer composites, discussing the state of the art, new challenges, and opportunities of various polymer composite systems, as well as preparation and manufacturing techniques. The second part looks at macro systems, with an emphasis on fiber reinforced polymer composites, textile composites, and polymer hybrid composites. Likewise, the final section deals with micro systems, including micro particle reinforced polymer composites, the synthesis, surface modification and characterization of micro particulate fillers and flakes as well as filled polymer micro composites, plus applications and the recovery, recycling and life cycle analysis of synthetic polymeric composites.




Self-Consistent Methods for Composites


Book Description

This unique book is dedicated to the application of self-consistent methods to the solution of static and dynamic problems of the mechanics and physics of composite materials. The effective elastic, electric, dielectric, thermo-conductive and other properties of composite materials reinforced by ellipsoidal, spherical multi-layered inclusions, thin hard and soft inclusions, short fibers and unidirected multi-layered fibers are considered. The book contains many concrete results.




Effective Properties of Heterogeneous Materials


Book Description

The book contains state-of the-art reviews in the area of effective properties of heterogeneous materials - the classical field at interface of materials science and solid mechanics. The primary focus is on thermo-mechanical properties, materials science applications, as well as computational aspects and new opportunities provided by rapidly increasing computer powers. The reviews are at the level that is appropriate for a substantial community of researchers working in this field, both at universities and in the industry, and to graduate students. The book can be used as supplementary reading to graduate level courses.




Advances in Heterogeneous Material Mechanics 2008


Book Description

"The International Conference on Heterogeneous Material Mechanics (ICHMM) in Huangshan, China, June 3-8, 2008 follows the successful inaugural ICHMM held in ChongQing, China in June, 2004. The ICHMM series is the first international forum that focuses exclusively on various issues related to the behavior of heterogeneous materials in a broad sense. The object of the ICHMM is to present and publicize integrated scientific and engineering approaches to the measurement and modeling of phenomena at the interface of materials science, physics, chemistry, biology, and solid mechanics."--Preface, p. xxxix.




Inelastic Deformation of Composite Materials


Book Description

Polymer composites were introduced for the aerospace industry as light, strong, stiff materials, and adopted by the construction and automobile industries, among others. Meanwhile, composite materials have been introduced to fulfill the uses that these conventional materials could not, such as in extreme environments. The research for new composites includes not only new polymer systems, but metals, ceramics and intermetallic systems as well. This volume contains a selection of recent work by leading researchers in micromechanics on the topics of prediction of overall properties of elastic, perfectly bonded systems, problems associated with inelastic deformation of the phase, debonding at interfaces and growth of distributed damage. Many familiar aspects of mechanical behavior, such as fatigue, fracture, strength and buckling, etc. have been reexamined and adapted for these new systems.




Computational Mesomechanics of Composites


Book Description

Mechanical properties of composite materials can be improved by tailoring their microstructures. Optimal microstructures of composites, which ensure desired properties of composite materials, can be determined in computational experiments. The subject of this book is the computational analysis of interrelations between mechanical properties (e.g., strength, damage resistance stiffness) and microstructures of composites. The methods of mesomechanics of composites are reviewed, and applied to the modelling of the mechanical behaviour of different groups of composites. Individual chapters are devoted to the computational analysis of the microstructure- mechanical properties relationships of particle reinforced composites, functionally graded and particle clusters reinforced composites, interpenetrating phase and unidirectional fiber reinforced composites, and machining tools materials.




Bio-Based Composites for High-Performance Materials


Book Description

Since synthetic plastics derived from fossil resources are mostly non-biodegradable, many academic and industrial researchers have shifted their attention toward bio-based materials, which are more eco-friendly.Bio-Based Composites for High-Performance Materials: From Strategy to Industrial Application provides an overview of the state-of-art in bi




Micromechanics of Composite Materials


Book Description

This book presents a broad exposition of analytical and numerical methods for modeling composite materials, laminates, polycrystals and other heterogeneous solids, with emphasis on connections between material properties and responses on several length scales, ranging from the nano and microscales to the macroscale. Many new results and methods developed by the author are incorporated into the rich fabric of the subject, which has developed from the work of many researchers over the last 50 years. Among the new results, the book offers an extensive analysis of internal and interface stresses caused by eigenstrains, such as thermal, transformation and inelastic strains in the constituents, which often exceed those caused by mechanical loads, and of inelastic behavior of metal matrix composites. Fiber prestress in laminates, and modeling of functionally graded materials are also analyzed. Furthermore, this book outlines several key subjects on modeling the properties of composites reinforced by particles of various shapes, aligned fibers, symmetric laminated plates and metal matrix composites. This volume is intended for advanced undergraduate and graduate students, researchers and engineers interested and involved in analysis and design of composite structures.