Exploiting Semantic Web Knowledge Graphs in Data Mining


Book Description

Data Mining and Knowledge Discovery in Databases (KDD) is a research field concerned with deriving higher-level insights from data. The tasks performed in this field are knowledge intensive and can benefit from additional knowledge from various sources, so many approaches have been proposed that combine Semantic Web data with the data mining and knowledge discovery process. This book, Exploiting Semantic Web Knowledge Graphs in Data Mining, aims to show that Semantic Web knowledge graphs are useful for generating valuable data mining features that can be used in various data mining tasks. In Part I, Mining Semantic Web Knowledge Graphs, the author evaluates unsupervised feature generation strategies from types and relations in knowledge graphs used in different data mining tasks such as classification, regression, and outlier detection. Part II, Semantic Web Knowledge Graphs Embeddings, proposes an approach that circumvents the shortcomings introduced with the approaches in Part I, developing an approach that is able to embed complete Semantic Web knowledge graphs in a low dimensional feature space where each entity and relation in the knowledge graph is represented as a numerical vector. Finally, Part III, Applications of Semantic Web Knowledge Graphs, describes a list of applications that exploit Semantic Web knowledge graphs like classification and regression, showing that the approaches developed in Part I and Part II can be used in applications in various domains. The book will be of interest to all those working in the field of data mining and KDD.




Applications and Developments in Semantic Process Mining


Book Description

As technology becomes increasingly intelligent, various factors within the field of data science are seeing significant transformation. Process analysis is one area that is undergoing substantial development due to the implementation of semantic reasoning and web technologies. The congruence of these two systems has created various applications and developments in data processing and analysis across several professional fields. Applications and Developments in Semantic Process Mining is an essential reference source that discusses the improvement of process mining algorithms through the implementation of semantic modeling and representation. Featuring research on topics such as domain ontologies, fuzzy modeling, and information extraction, the book takes into account the different stages of process mining and its application in real time and then expounds the classical process mining techniques to semantical preparation of the extracted models for further analysis and querying at a more abstract level. The book provides a wide-ranging idea of the application and development of semantic process mining that is expected to be beneficial and used by professionals, software and data engineers, software developers, IT experts, business owners and entrepreneurs, and process analysts.




Semantic Data Mining


Book Description

Ontologies are now increasingly used to integrate, and organize data and knowledge, particularly in data and knowledge-intensive applications in both research and industry. The book is devoted to semantic data mining – a data mining approach where domain ontologies are used as background knowledge, and where the new challenge is to mine knowledge encoded in domain ontologies and knowledge graphs, rather than only purely empirical data. The introductory chapters of the book provide theoretical foundations of both data mining and ontology representation. Taking a unified perspective, the book then covers several methods for semantic data mining, addressing tasks such as pattern mining, classification and similarity-based approaches. It attempts to provide state-of-the-art answers to specific challenges and peculiarities of data mining with use of ontologies, in particular: How to deal with incompleteness of knowledge and the so-called Open World Assumption? What is a truly “semantic” similarity measure? The book contains several chapters with examples of applications of semantic data mining. The examples start from a scenario with moderate use of lightweight ontologies for knowledge graph enrichment and end with a full-fledged scenario of an intelligent knowledge discovery assistant using complex domain ontologies for meta-mining, i.e., an ontology-based meta-learning approach to full data mining processes. The book is intended for researchers in the fields of semantic technologies, knowledge engineering, data science, and data mining, and developers of knowledge-based systems and applications.




Introduction to the Semantic Web and Semantic Web Services


Book Description

Even though the semantic Web is a relatively new and dynamic area of research, a whole suite of components, standards, and tools have already been developed around it. Using a concrete approach, Introduction to the Semantic Web and Semantic Web Services builds a firm foundation in the concept of the semantic Web, its principal technologies, its rea




Foundations of Semantic Web Technologies


Book Description

With more substantial funding from research organizations and industry, numerous large-scale applications, and recently developed technologies, the Semantic Web is quickly emerging as a well-recognized and important area of computer science. While Semantic Web technologies are still rapidly evolving, Foundations of Semantic Web Technologies focuses




Semantic Web Science and Real-World Applications


Book Description

Continual advancements in web technology have highlighted the need for formatted systems that computers can utilize to easily read and sift through the hundreds of thousands of data points across the internet. Therefore, having the most relevant data in the least amount of time to optimize the productivity of users becomes a priority. Semantic Web Science and Real-World Applications provides emerging research exploring the theoretical and practical aspects of semantic web science and real-world applications within the area of big data. Featuring coverage on a broad range of topics such as artificial intelligence, social media monitoring, and microblogging recommendation systems, this book is ideally designed for IT consultants, academics, professionals, and researchers of web science seeking the current developments, requirements and standards, and technology spaces presented across academia and industries.




A Semantic Web Primer, third edition


Book Description

A new edition of the widely used guide to the key ideas, languages, and technologies of the Semantic Web The development of the Semantic Web, with machine-readable content, has the potential to revolutionize the World Wide Web and its uses. A Semantic Web Primer provides an introduction and guide to this continuously evolving field, describing its key ideas, languages, and technologies. Suitable for use as a textbook or for independent study by professionals, it concentrates on undergraduate-level fundamental concepts and techniques that will enable readers to proceed with building applications on their own and includes exercises, project descriptions, and annotated references to relevant online materials. The third edition of this widely used text has been thoroughly updated, with significant new material that reflects a rapidly developing field. Treatment of the different languages (OWL2, rules) expands the coverage of RDF and OWL, defining the data model independently of XML and including coverage of N3/Turtle and RDFa. A chapter is devoted to OWL2, the new W3C standard. This edition also features additional coverage of the query language SPARQL, the rule language RIF and the possibility of interaction between rules and ontology languages and applications. The chapter on Semantic Web applications reflects the rapid developments of the past few years. A new chapter offers ideas for term projects. Additional material, including updates on the technological trends and research directions, can be found at http://www.semanticwebprimer.org.




Spinning the Semantic Web


Book Description

A guide to the Semantic Web, which will transform the Web into a structured network of resources organized by meaning and relationships.




Semantic Web for the Working Ontologist


Book Description

Semantic Web for the Working Ontologist: Effective Modeling in RDFS and OWL, Second Edition, discusses the capabilities of Semantic Web modeling languages, such as RDFS (Resource Description Framework Schema) and OWL (Web Ontology Language). Organized into 16 chapters, the book provides examples to illustrate the use of Semantic Web technologies in solving common modeling problems. It uses the life and works of William Shakespeare to demonstrate some of the most basic capabilities of the Semantic Web. The book first provides an overview of the Semantic Web and aspects of the Web. It then discusses semantic modeling and how it can support the development from chaotic information gathering to one characterized by information sharing, cooperation, and collaboration. It also explains the use of RDF to implement the Semantic Web by allowing information to be distributed over the Web, along with the use of SPARQL to access RDF data. Moreover, the reader is introduced to components that make up a Semantic Web deployment and how they fit together, the concept of inferencing in the Semantic Web, and how RDFS differs from other schema languages. Finally, the book considers the use of SKOS (Simple Knowledge Organization System) to manage vocabularies by taking advantage of the inferencing structure of RDFS-Plus. This book is intended for the working ontologist who is trying to create a domain model on the Semantic Web. - Updated with the latest developments and advances in Semantic Web technologies for organizing, querying, and processing information, including SPARQL, RDF and RDFS, OWL 2.0, and SKOS - Detailed information on the ontologies used in today's key web applications, including ecommerce, social networking, data mining, using government data, and more - Even more illustrative examples and case studies that demonstrate what semantic technologies are and how they work together to solve real-world problems




Innovations, Developments, and Applications of Semantic Web and Information Systems


Book Description

In the last few years, there has been an increased advancement and evolution in semantic web and information systems in a variety of fields. The integration of these approaches to ontology engineering, sophisticated methods and algorithms for open linked data extraction, and advanced decision-making creates new opportunities for a bright future. Innovations, Developments, and Applications of Semantic Web and Information Systems is a critical scholarly resource that discusses integrated methods of research and analytics in information technology. Featuring coverage on a broad range of topics, such as cognitive computing, artificial intelligence, machine learning, data analysis, and algorithms, this book is geared towards researchers, academicians, and professionals seeking current information on semantic web and information systems.