Sensors Based on Nanostructured Materials


Book Description

This book presents the many different techniques and methods of fabricating materials on the nanometer scale, and, specifically, the utilization of these resources with regard to sensors. The techniques described are studied from an application-oriented perspective, providing the reader with a perspective of the types of nanostructured sensors available that is broader than other books which concentrate on theoretical situations related to specific fabrication techniques.




Nanostructured Materials


Book Description

This book discusses the early stages of the development of nanostructures, including synthesis techniques, growth mechanisms, the physics and chemistry of nanostructured materials, various innovative characterization techniques, the need for functionalization and different functionalization methods as well as the various properties of nanostructured materials. It focuses on the applications of nanostructured materials, such as mechanical applications, nanoelectronics and microelectronic devices, nano-optics, nanophotonics and nano-optoelectronics, as well as piezoelectric, agriculture, biomedical and, environmental remediation applications, and anti-microbial and antibacterial properties. Further, it includes a chapter on nanomaterial research developments, highlighting work on the life-cycle analysis of nanostructured materials and toxicity aspects.




Smart Nanostructure Materials and Sensor Technology


Book Description

This book highlights the significance and usefulness of nanomaterials for the development of sensing devices and their real-life applications. The book also addresses various means of synthesizing 2D/3D nanomaterials, e.g., hydrothermal deposition process, electrospinning, Ostwald ripening, sputtering heterogeneous deposition, liquid-phase preparation, the vapor deposition approach, and aerosol flame synthesis. It presents an informative overview of the role of nanoscale materials in the development of advanced sensor devices at nanoscale and discusses the applications of nanomaterials in different forms prepared by diverse techniques in the field of optoelectronics and biomedical devices. Major features, such as type of nanomaterials, fabrication methods, applications, tasks, benefits and restrictions, and saleable features, are also covered.




Functional Nanomaterials


Book Description

This book provides a comprehensive overview of the current state-of-art in oxide nanostructures, carbon nanostructures and 2D materials fabrication. It covers mimicking of sensing mechanisms and applications in gas sensors. It focuses on gas sensors based on functional nanostructured materials, especially related to issues of sensitivity, selectivity, and temperature dependency for sensors. It covers synthesis, properties, and current gas sensing tools and discusses the necessity for miniaturized sensors. This book will be of use to senior undergraduate and graduate students, professionals, and researchers in the field of solid-state physics, materials science, surface science and chemical engineering.




Nanotechnology-Enabled Sensors


Book Description

Nanotechnology provides tools for creating functional materials, devices, and systems by controlling materials at the atomic and molecular scales and making use of novel properties and phenomena. Nanotechnology-enabled sensors find applications in several fields such as health and safety, medicine, process control and diagnostics. This book provides the reader with information on how nanotechnology enabled sensors are currently being used and how they will be used in the future in such diverse fields as communications, building and facilities, medicine, safety, and security, including both homeland defense and military operations.




Nanoscale Matter and Principles for Sensing and Labeling Applications


Book Description

Zusammenfassung: This book is a compilation of carefully chosen chapters that cover the subjects of nanoscale matter, sensing, and labelling applications. It is aimed primarily at scientists and researchers who are already involved in theme-based research or who are just starting their careers. Despite the diverse nature of the topics covered, which include a range of materials in various forms and uses, the emphasis is primarily on sensing and labelling phenomena. The book begins with materials quantification in nanoscale systems by using an innovative technique like "molecular secondary ion mass spectrometry without calibration standards". Subsequently, the book features an array of materials such as inorganic semiconductor nanoscale particles, carbon dots, rare-earth oxides, polymer nanocomposites, and a few biomaterials, all of which illustrate their functionality and potential for deployment in a wide variety of sensing applications. Although the book delves into the technical aspects of fabrication workouts to some extent, the focus is predominantly on the physical principles, mechanisms, and relevance involved in sensing and labelling applications. The book covers a wide range of topics that leverage the unique properties of nanoscale materials. By carefully selecting appropriate active materials, the authors explore the detection of LPG, hazardous and explosive gases, as well as humidity sensing and hydrogen evolution. It also delves into photo-sensing and persistent photoconductivity by using nanoscale semiconductors, which are used for heavy metal sensing and UV sensing, respectively. The use of metal nanoparticles in various forms is reviewed to address issues related to water contamination, biofilm protection, and food-borne pathogens. The book also discusses surface plasmon resonance, starting with its basic principles and expanding to its relevance in a broader perspective, with a greater focus on applied biosensing. Nanoscale ferrites and magnetic systems are explored with an emphasis on magnetic sensing and actuation. Lastly, the book explores the use of rare-earth-based nanosystems, highlighting persistent luminescence and up/down-converted transitions, which have unprecedented applications in bioimaging and biolabeling. Every effort has been made to strike a balance between the observed phenomena in the emerging areas of sensing applications and suitable theoretical treatments there in.




Nanomaterials-Based Electrochemical Sensors: Properties, Applications, and Recent Advances


Book Description

As opposed to conventional electrochemical sensors, nanomaterials-based sensors are active and effective in their action with even a minute concentration of analyte. A number of research studies are bringing about an evolution in their development and advancement because of their unique and effective properties. Nanoscale electrochemical sensors have applications in almost every field of life including the detection of neurochemicals, heavy metals, energy components, body fluids, biological matrices, cancer relevant biomolecules, aromatic hydrocarbons, also in playing their role in food science because of their capability in providing quality control and safety. There is a need to develop these nanomaterials-based electrochemical sensors to be more widely available for accurate sensing of minute concentrations especially in the case of heavy metal detection, biofluids, and other biomaterials. This book outlines the major preparation, fabrication and manufacture of nanomaterials-based electrochemical sensors, as well as detailing their principle medical, environmental and industrial applications in an effort to meet this need.This book is a valuable reference source for materials scientists, engineers, electrochemists, environmental engineers and biomedical engineers who want to understand how nanomaterials-based electrochemical sensors are made, and how they are used. Explains the techniques used for the fabrication and manufacture of nanomaterials-based electrochemical sensors Discusses the major applications of nanomaterials-based electrochemical sensors in biomedicine and environmental science Assesses the potential toxicity and other challenges associated with using nanomaterials-based electrochemical sensors




Nanostructured Materials in Electrochemistry


Book Description

Providing the unique and vital link between the worlds of electrochemistry and nanomaterials, this reference and handbook covers advances in electrochemistry through the nanoscale control of electrode structures, as well as advances in nanotechnology through electrochemical synthesis strategies. It demonstrates how electrochemical methods are of great scientific and commercial interest due to their low cost and high efficiency, and includes the synthesis of nanowires, nanoparticles, nanoporous and layered nanomaterials of various compositions, as well as their applications -- ranging from superior electrode materials to energy storage, biosensors, and electroanalytical devices.




Functional Nanomaterials and Devices for Electronics, Sensors and Energy Harvesting


Book Description

This book contains reviews of recent experimental and theoretical results related to nanomaterials. It focuses on novel functional materials and nanostructures in combination with silicon on insulator (SOI) devices, as well as on the physics of new devices and sensors, nanostructured materials and nano scaled device characterization. Special attention is paid to fabrication and properties of modern low-power, high-performance, miniaturized, portable sensors in a wide range of applications such as telecommunications, radiation control, biomedical instrumentation and chemical analysis. In this book, new approaches exploiting nanotechnologies (such as UTBB FD SOI, Fin FETs, nanowires, graphene or carbon nanotubes on dielectric) to pave a way between “More Moore” and “More than Moore” are considered, in order to create different kinds of sensors and devices which will consume less electrical power, be more portable and totally compatible with modern microelectronics products.




Functionalized Nanomaterial-Based Electrochemical Sensors


Book Description

Functionalized Nanomaterial-Based Electrochemical Sensors: Principles, Fabrication Methods, and Applications provides a comprehensive overview of materials, functionalized interfaces, fabrication strategies and application areas. Special attention is given to the remaining challenges and opportunities for commercial realization of functionalized nanomaterial-based electrochemical sensors. An assortment of nanomaterials has been investigated for their incorporation into electrochemical sensors. For example, carbon- based nanomaterials (carbon nanotube, graphene and carbon fiber), noble metals (Au, Ag and Pt), polymers (nafion, polypyrrole) and non-noble metal oxides (Fe2O3, NiO, and Co3O4). The most relevant materials are discussed in the book with an emphasis on their evaluation of their realization in commercial applications. Application areas touched on include the environment, food and medicine industries. Health, safety and regulation considerations are touched on, along with economic and commercialization trends. Introduces the principles of nanomaterials for electrochemical sensing applications Reviews the most relevant fabrication strategies for functionalized nanomaterial-based electrochemical sensing platforms Discusses considerations for the commercial realization of functionalized nanomaterial-based electrochemical sensors in the environment, food and point-of-care applications