Sensory Circuits


Book Description

This book is a new programme of physical activities that provide regular and controlled input to specific sensory-motor systems enabling children to be energised or calmed so that they can get the most out their day. It provides a practical guide to setting up your own daily Sensory Circuits programme.







Handbook of Brain Microcircuits


Book Description

Updated and revised, the second edition of Handbook of Brain Microcircuits covers the functional organization of 50 brain regions. This now-classic text uses an interdisciplinary approach to examine the integration of structure, function, electrophysiology, pharmacology, brain imaging, and behavior. Through uniquely concise and authoritative chapters by leaders in their fields, the Handbook of Brain Microcircuits synthesizes many of the new principles of microcircuit organization that are defining a new era in understanding the brain connectome, integrating the major neuronal pathways and essential microcircuits with brain function. New to the Second Edition: · Insights into new regions of the brain through canonical microcircuit diagrams for each region · Latest methodology in optogenetics, neurotransmitter uncaging, computational models of neurons and microcircuits, serial ultrastructure reconstructions, cellular and regional imaging · Extrapolated data from new genetic tools and understandings applied to microcircuits in the mouse and Drosophila · Common principles across vertebrate and invertebrate microcircuit systems, one of the key goals of modern neuroscience




Neural Circuit Formation and Sensory Inputs


Book Description

Sensory systems play important roles in inducing a variety of responses that are critical to the survival of individuals and species. Neural circuits are generated by a combination of activity dependent and independent processes. The basic architecture of sensory systems is built before birth based on a genetic program. However, the neural maps and circuits are further refined after birth in an activity-dependent manner. If the system is left unstimulated in neonates, its function is permanently impaired and cannot be recovered even when it is stimulated after the critical period.




The New Handbook of Multisensory Processing


Book Description

The major reference work for a rapidly advancing field synthesizes central themes, reports on current findings, and offers a blueprint for future research. Scientists' attempts to understand the physiology underlying our apprehension of the physical world was long dominated by a focus on the individual senses. The 1980s saw the beginning of systematic efforts to examine interactions among different sensory modalities at the level of the single neuron. And by the end of the 1990s, a recognizable and multidisciplinary field of "multisensory processes" had emerged. More recently, studies involving both human and nonhuman subjects have focused on relationships among multisensory neuronal ensembles and their behavioral, perceptual, and cognitive correlates. The New Handbook of Multisensory Processing synthesizes the central themes in this rapidly developing area, reports on current findings, and offers a blueprint for future research. The contributions, all of them written for this volume by leading experts, reflect the evolution and current state of the field. This handbook does more than simply review the field. Each of the volume's eleven sections broadly surveys a major topic, and each begins with a substantive and thought-provoking commentary by the section editor that identifies the major issues being explored, describes their treatment in the chapters that follow, and sets these findings within the context of the existing body of knowledge. Together, the commentaries and chapters provide an invaluable guide to areas of general agreement, unresolved issues, and topics that remain to be explored in this fast-moving field.




Neural Circuit Development and Function in the Healthy and Diseased Brain


Book Description

The genetic, molecular, and cellular mechanisms of neural development are essential for understanding evolution and disorders of neural systems. Recent advances in genetic, molecular, and cell biological methods have generated a massive increase in new information, but there is a paucity of comprehensive and up-to-date syntheses, references, and historical perspectives on this important subject. The Comprehensive Developmental Neuroscience series is designed to fill this gap, offering the most thorough coverage of this field on the market today and addressing all aspects of how the nervous system and its components develop. Particular attention is paid to the effects of abnormal development and on new psychiatric/neurological treatments being developed based on our increased understanding of developmental mechanisms. Each volume in the series consists of review style articles that average 15-20pp and feature numerous illustrations and full references. Volume 3 offers 40 high level articles devoted mainly to anatomical and functional development of neural circuits and neural systems, as well as those that address neurodevelopmental disorders in humans and experimental organisms. - Series offers 144 articles for 2904 full color pages addressing ways in which the nervous system and its components develop - Features leading experts in various subfields as Section Editors and article Authors - All articles peer reviewed by Section Editors to ensure accuracy, thoroughness, and scholarship - Volume 3 sections include coverage of: mechanisms that control the assembly of neural circuits in specific regions of the nervous system, multiple aspects of cognitive development, and disorders of the nervous system arising through defects in neural development




System, Structure and Experience


Book Description

First Published in 1969, System, Structure and Experience offers a basic information-flow design capable of accounting for the complex operations of a culturally cognizant and purposive mind consistently with the general relationship of the human organism and its environment. By means of the isomorphy of a hierarchically ordered series of circuits, a way is opened for resolving the traditional ‘mind- body’ or ‘psycho-physical’ problems. The work outlines the design of a self-stabilizing and self-organizing system, shows that it applies to artificial, biological as well as cognitive structures, and then undertakes to analyze the diverse facets of perpetual, scientific, aesthetic, and religious experience in its terms. The interrelation of the two or more such multi-level cognitive systems offers insights into the problems of human communication. The book is a contribution to the scientific analysis of cognitive experience and promotes the transfer of the traditional domain of an introspectively founded philosophy of mind into the realm of modern system research.




Genetic techniques and circuit analysis


Book Description

How new genetic techniques are revolutionizing the study of neural circuits for both invertebrate and vertebrate systems. Understanding how specific types of neurons contribute to behaviour is an ambitious goal. For invertebrate model systems (e.g. worms, flies), neurons in the brain are often too small to be studied routinely by electrophysiological approaches. For vertebrates, large ensembles of cells have to be studied, and these cells are often distributed over considerable volumes e.g. GABAergic interneurons in neocortex. Cell type-selective manipulations may be a way forward for treating illness. Before such aims can be realized, or even appreciated as feasible, the brain circuitry in experimental animals has to be known by both establishing the connections between cell types and reversibly manipulating the activity of the cells subtype-selectively. Methods that have all appeared in just the last couple of years to tackle this include: retrograde tracing of circuitry using viruses, ligand-receptor combinations that make subtypes of neurons uniquely sensitive to a drug (e.g. zolpidem, allatostatin, serotonin ligands or ivermectin), and light-activated channels and pumps for stimulation and inhibition. This collection of methods promises much, forming the new subdisciplines of “pharmacogenetics” and “opticogenetics”. These methods are revolutionizing the study of brain circuitry for both invertebrates and vertebrate systems.




Life


Book Description

Authoritative, thorough, and engaging, Life: The Science of Biology achieves an optimal balance of scholarship and teachability, never losing sight of either the science or the student. The first introductory text to present biological concepts through the research that revealed them, Life covers the full range of topics with an integrated experimental focus that flows naturally from the narrative. This approach helps to bring the drama of classic and cutting-edge research to the classroom - but always in the context of reinforcing core ideas and the innovative scientific thinking behind them. Students will experience biology not just as a litany of facts or a highlight reel of experiments, but as a rich, coherent discipline.




Circuit Mechanisms of Neurodegenerative Diseases


Book Description

This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.