NASA Technical Note


Book Description




Aerodynamic Heating in Supersonic and Hypersonic Flows


Book Description

Aerodynamic Heating in Supersonic and Hypersonic Flows: Advanced Techniques for Drag and Aero-heating Reduction explores the pros and cons of different heat reduction techniques on other characteristics of hypersonic vehicles. The book begins with an introduction of flow feature around the forebody of space vehicles and explains the main parameters on drag force and heat production in this region. The text then discusses the impact of severe heat production on the nose of hypervelocity vehicles, different reduction techniques for aerodynamic heating, and current practical applications for forebody shock control devices. Delivers valuable insight for aerospace engineers, postgraduate students, and researchers. - Presents computational results of different cooling systems for drag and heat reduction around nose cones - Explains mechanisms of drag reduction via mechanical, fluidic, and thermal systems - Provides comprehensive details about the aerodynamics of space vehicles and the different shock features in the forebody of super/hypersonic vehicles - Describes how numerical simulations are used for the development of the current design of forebody of super/hypersonic vehicles







Separation of Flow


Book Description

Interdisciplinary and Advanced Topics in Science and Engineering, Volume 3: Separation of Flow presents the problem of the separation of fluid flow. This book provides information covering the fields of basic physical processes, analyses, and experiments concerning flow separation. Organized into 12 chapters, this volume begins with an overview of the flow separation on the body surface as discusses in various classical examples. This text then examines the analytical and experimental results of the laminar boundary layer of steady, two-dimensional flows in the subsonic speed range. Other chapters consider the study of flow separation on the two-dimensional body, flow separation on three-dimensional body shape and particularly on bodies of revolution. This book discusses as well the analytical solutions of the unsteady flow separation. The final chapter deals with the purpose of separation flow control to raise efficiency or to enhance the performance of vehicles and fluid machineries involving various engineering applications. This book is a valuable resource for engineers.




Wind-tunnel Study of Oscillating Flow-induced Surface Pressures on a Tension-cone Geometry Model


Book Description

Oscillating flow about a spiked body in a supersonic stream has been investigated in a wind tunnel at Mach 5 at free-stream unit Reynolds numbers of 2,500,000 to 20,000,000 per foot using fast-response pressure transducers, accelerometers and schlieren movie cameras. A tension-cone-type model with replaceable nosetips of two different lengths and two different surface roughnesses was used.




28th International Symposium on Shock Waves


Book Description

The University of Manchester hosted the 28th International Symposium on Shock Waves between 17 and 22 July 2011. The International Symposium on Shock Waves first took place in 1957 in Boston and has since become an internationally acclaimed series of meetings for the wider Shock Wave Community. The ISSW28 focused on the following areas: Blast Waves, Chemically Reacting Flows, Dense Gases and Rarefied Flows, Detonation and Combustion, Diagnostics, Facilities, Flow Visualisation, Hypersonic Flow, Ignition, Impact and Compaction, Multiphase Flow, Nozzle Flow, Numerical Methods, Propulsion, Richtmyer-Meshkov, Shockwave Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shockwave Phenomena and Applications, as well as Medical and Biological Applications. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 28 and individuals interested in these fields.