SERS for Point-of-care and Clinical Applications


Book Description

SERS for Point-of-care and Clinical Applications focuses on the current uses of Surface-Enhanced Raman Spectroscopy (also known as Surface-Enhanced Raman Scattering) techniques in the clinical and point-of-care settings. In recent years, improvements in detector technology and nanostructure fabrication have expanded the possibilities of using SERS in biomedical applications. These applications are not always immediately evident to newcomers in the field, as Raman and SERS are often introduced as analytical methods for chemical analysis. This book offers a concise introduction to the biomedical applications of SERS for graduate students, scientists, and researchers in all related fields. Readers are first presented with an overview of SERS biomedical applications, and the remaining sections provide in-depth information about point-of-care and clinical applications of SERS using specific examples from the current literature. The first book of its kind to highlight point-of-care applications of SERS Covers the recent biomedical applications of SERS carried out by leaders in the field Includes chapters on SERS probes and labels and label-free uses of SERS




Principles and Clinical Diagnostic Applications of Surface-Enhanced Raman Spectroscopy


Book Description

Principles and Clinical Diagnostic Applications of Surface-Enhanced Raman Spectroscopy summaries the principles of SERS and nanoplasmonic materials for SERS, with a focus on applications in clinical diagnostics. This book covers the fundamentals of SERS, materials, experimental aspects and applications of SERS in clinical diagnostics, with discussions on label-free/direct SERS assay, design and synthesis of SERS nanotags, SERS nanotags for point-of-care diagnostics, microfluidic SERS assay, and in vitro and in vivo sensing and imaging. Written by subject experts, this comprehensive volume showcases recent progress in SERS applications in clinical diagnostics, thus helping readers understand when and how to use SERS in a clinical setting. Introduces the basics of SERS/SERS nanotags and suitable nanomaterials for SERS applications Gives an overview on the cutting-edge research on SERS applications for clinical diagnosis, including the latest advances in our understanding of underlying principles to enable material design and clinical applications Gradually builds from the fundamental concepts to the applications of SERS for clinical diagnostics




SERS for Point-of-care and Clinical Applications


Book Description

SERS for Point-of-care and Clinical Applications focuses on the use of Surface-Enhanced Raman Spectroscopy (also known as Surface-Enhanced Raman Scattering) techniques in clinical and point-of-care settings. Sections provide an overview of SERS biomedical applications, providing in-depth information about point-of-care and clinical applications of SERS using specific examples from current literature. These applications are not always immediately evident to newcomers in the field, as Raman and SERS are often introduced as analytical methods for chemical analysis. This book offers a concise introduction to the biomedical applications of SERS for graduate students, scientists and researchers in all related fields. - Highlights point-of-care applications for SERS - Covers the recent biomedical applications of SERS carried out by leaders in the field - Includes chapters on SERS probes and labels and label-free uses of SERS




Point-of-care testing


Book Description

The underlying technology and the range of test parameters available are evolving rapidly. The primary advantage of POCT is the convenience of performing the test close to the patient and the speed at which test results can be obtained, compared to sending a sample to a laboratory and waiting for results to be returned. Thus, a series of clinical applications are possible that can shorten the time for clinical decision-making about additional testing or therapy, as delays are no longer caused by preparation of clinical samples, transport, and central laboratory analysis. Tests in a POC format can now be found for many medical disciplines including endocrinology/diabetes, cardiology, nephrology, critical care, fertility, hematology/coagulation, infectious disease and microbiology, and general health screening. Point-of-care testing (POCT) enables health care personnel to perform clinical laboratory testing near the patient. The idea of conventional and POCT laboratory services presiding within a hospital seems contradictory; yet, they are, in fact, complementary: together POCT and central laboratory are important for the optimal functioning of diagnostic processes. They complement each other, provided that a dedicated POCT coordination integrates the quality assurance of POCT into the overall quality management system of the central laboratory. The motivation of the third edition of the POCT book from Luppa/Junker, which is now also available in English, is to explore and describe clinically relevant analytical techniques, organizational concepts for application and future perspectives of POCT. From descriptions of the opportunities that POCT can provide to the limitations that clinician’s must be cautioned about, this book provides an overview of the many aspects that challenge those who choose to implement POCT. Technologies, clinical applications, networking issues and quality regulations are described as well as a survey of future technologies that are on the future horizon. The editors have spent considerable efforts to update the book in general and to highlight the latest developments, e.g., novel POCT applications of nucleic acid testing for the rapid identification of infectious agents. Of particular note is also that a cross-country comparison of POCT quality rules is being described by a team of international experts in this field.




Surface-Enhanced Vibrational Spectroscopy


Book Description

Surface Enhanced Vibrational Spectroscopy (SEVS) has reached maturity as an analytical technique, but until now there has been no single work that describes the theory and experiments of SEVS. This book combines the two important techniques of surface-enhanced Raman scattering (SERS) and surface-enhanced infrared (SEIR) into one text that serves as the definitive resource on SEVS. Discusses both the theory and the applications of SEVS and provides an up-to-date study of the state of the art Offers interpretations of SEVS spectra for practicing analysts Discusses interpretation of SEVS spectra, which can often be very different to the non-enhanced spectrum - aids the practicing analyst




Principles of Surface-Enhanced Raman Spectroscopy


Book Description

SERS was discovered in the 1970s and has since grown enormously in breadth, depth, and understanding. One of the major characteristics of SERS is its interdisciplinary nature: it lies at the boundary between physics, chemistry, colloid science, plasmonics, nanotechnology, and biology. By their very nature, it is impossible to find a textbook that will summarize the principles needed for SERS of these rather dissimilar and disconnected topics. Although a basic understanding of these topics is necessary for research projects in SERS with all its many aspects and applications, they are seldom touched upon as a coherent unit during most undergraduate studies in physics or chemistry. This book intends to fill this existing gap in the literature. It provides an overview of the underlying principles of SERS, from the fundamental understanding of the effect to its potential applications. It is aimed primarily at newcomers to the field, graduate students, researchers or scientists, attracted by the many applications of SERS and plasmonics or its basic science. The emphasis is on concepts and background material for SERS, such as Raman spectroscopy, the physics of plasmons, or colloid science, all of them introduced within the context of SERS, and from where the more specialized literature can be followed. - Represents one of very few books fully dedicated to the topic of surface-enhanced Raman spectroscopy (SERS) - Gives a comprehensive summary of the underlying physical concepts around SERS - Provides a detailed analysis of plasmons and plasmonics




Nanotechnology Applications in Health and Environmental Sciences


Book Description

Nanoscience and nanotechnologies are leading to a major point to our understanding of nature. Nanotechnology can be generally defined as creation and use of nano-sized systems, devices, and structures which have special functions or properties because of their small size. This volume on Nanotechnology Applications in Health and Environmental Sciences focuses on biotechnological and environmental applications of nanomaterials. It covers popular and various nanomedical topics such as oncology, genetics, and reconstructive medicine. Additionally, many chapters give leading-edge information on nano-sensor applications and usage in specific disciplines. Also, two chapters on novel subjects have been included on Lantibiotics and microbiota. This book should be useful for nanotechnologists, microbiologists, and researchers interested in nanomedicine and nano-biotechnology, as well as environmental nanotechnology.




Miniaturized Analytical Devices


Book Description

Miniaturized Analytical Devices An in-depth overview of integrating functionalized nanomaterials with mass spectrometry, spectroscopy, electrophoresis, and other important analytical techniques Miniaturized Analytical Devices: Materials and Technology is an up-to-date resource exploring the analytical applications of miniaturized technology in areas such as clinical microbiology, pharmaceuticals, agriculture, and environmental analysis. The book covers the integration of functional nanomaterials in mass spectrometry, microscopy, electrophoresis, and more—providing the state-of-the-art information required for successfully implementing a range of chemical analysis techniques on microchips. Featuring contributions from a panel of international experts in the field, the book begins with an introduction to selected miniaturized devices, nanomaterials, and analytical methods. Subsequent sections describe functionalized nanomaterials (FNMs) for miniaturized devices and discuss techniques such as miniaturized mass spectrometry for bioassays and miniaturized microscopy for cell imaging. The book concludes by exploring a variety of applications of miniaturized devices in areas including metal analysis, bioimaging, DNA separation and analysis, molecular biology, and more. This timely volume: Surveys the current state of the field and provides a starting point for developing faster, more reliable, and more selective analytical devices Focuses on the practical applications of miniaturized analytical devices in materials science, clinical microbiology, the pharmaceutical industry, and environmental analysis Covers a wide range of materials and analytical techniques such as microvolume UV-VIS spectroscopy, microchip and capillary electrophoresis, and matrix assisted laser desorption ionization-mass spectrometry (MALDI-MS) analysis Discusses the role of miniaturized analytical devices in securing a green and sustainable future Miniaturized Analytical Devices: Materials and Technology is essential reading for analytical chemists, analytical laboratories, materials scientists, biologists, life scientists, and advanced students in related fields.




Glucose Sensing


Book Description

An essential reference for any laboratory working in the analytical fluorescence glucose sensing field. The increasing importance of these techniques is typified in one emerging area by developing non-invasive and continuous approaches for physiological glucose monitoring. This volume incorporates analytical fluorescence-based glucose sensing reviews, specialized enough to be attractive to professional researchers, yet appealing to a wider audience of scientists in related disciplines of fluorescence.




Lateral Flow Immunoassay


Book Description

Due to the simplicity, relative accuracy, fast result reporting, and user-friendliness of lateral flow immunoassay, its use has undergone tremendous growth in the diagnostic industry in the last few years. Such technology has been utilized widely and includes pregnancy and woman's health determination, cardiac and emergency conditions monitoring and testing, infectious disease including Flu screening, cancer marker screening, and drugs abuse testing. This book covers the scope of utilization, the principle of the technology, the patent concerns, information on the development and production of the test device and specific applications will be of interest to the diagnostic industry and the general scientific community.