Serverless ETL and Analytics with AWS Glue


Book Description

Build efficient data lakes that can scale to virtually unlimited size using AWS Glue Key Features Book DescriptionOrganizations these days have gravitated toward services such as AWS Glue that undertake undifferentiated heavy lifting and provide serverless Spark, enabling you to create and manage data lakes in a serverless fashion. This guide shows you how AWS Glue can be used to solve real-world problems along with helping you learn about data processing, data integration, and building data lakes. Beginning with AWS Glue basics, this book teaches you how to perform various aspects of data analysis such as ad hoc queries, data visualization, and real-time analysis using this service. It also provides a walk-through of CI/CD for AWS Glue and how to shift left on quality using automated regression tests. You’ll find out how data security aspects such as access control, encryption, auditing, and networking are implemented, as well as getting to grips with useful techniques such as picking the right file format, compression, partitioning, and bucketing. As you advance, you’ll discover AWS Glue features such as crawlers, Lake Formation, governed tables, lineage, DataBrew, Glue Studio, and custom connectors. The concluding chapters help you to understand various performance tuning, troubleshooting, and monitoring options. By the end of this AWS book, you’ll be able to create, manage, troubleshoot, and deploy ETL pipelines using AWS Glue.What you will learn Apply various AWS Glue features to manage and create data lakes Use Glue DataBrew and Glue Studio for data preparation Optimize data layout in cloud storage to accelerate analytics workloads Manage metadata including database, table, and schema definitions Secure your data during access control, encryption, auditing, and networking Monitor AWS Glue jobs to detect delays and loss of data Integrate Spark ML and SageMaker with AWS Glue to create machine learning models Who this book is for ETL developers, data engineers, and data analysts




Serverless ETL and Analytics with AWS Glue


Book Description

Build efficient data lakes that can scale to virtually unlimited size using AWS Glue Key Features Book DescriptionOrganizations these days have gravitated toward services such as AWS Glue that undertake undifferentiated heavy lifting and provide serverless Spark, enabling you to create and manage data lakes in a serverless fashion. This guide shows you how AWS Glue can be used to solve real-world problems along with helping you learn about data processing, data integration, and building data lakes. Beginning with AWS Glue basics, this book teaches you how to perform various aspects of data analysis such as ad hoc queries, data visualization, and real-time analysis using this service. It also provides a walk-through of CI/CD for AWS Glue and how to shift left on quality using automated regression tests. You’ll find out how data security aspects such as access control, encryption, auditing, and networking are implemented, as well as getting to grips with useful techniques such as picking the right file format, compression, partitioning, and bucketing. As you advance, you’ll discover AWS Glue features such as crawlers, Lake Formation, governed tables, lineage, DataBrew, Glue Studio, and custom connectors. The concluding chapters help you to understand various performance tuning, troubleshooting, and monitoring options. By the end of this AWS book, you’ll be able to create, manage, troubleshoot, and deploy ETL pipelines using AWS Glue.What you will learn Apply various AWS Glue features to manage and create data lakes Use Glue DataBrew and Glue Studio for data preparation Optimize data layout in cloud storage to accelerate analytics workloads Manage metadata including database, table, and schema definitions Secure your data during access control, encryption, auditing, and networking Monitor AWS Glue jobs to detect delays and loss of data Integrate Spark ML and SageMaker with AWS Glue to create machine learning models Who this book is for ETL developers, data engineers, and data analysts




Learning AWS


Book Description

Discover techniques and tools for building serverless applications with AWS Key Features Get well-versed with building and deploying serverless APIs with microservices Learn to build distributed applications and microservices with AWS Step Functions A step-by-step guide that will get you up and running with building and managing applications on the AWS platform Book Description Amazon Web Services (AWS) is the most popular and widely-used cloud platform. Administering and deploying application on AWS makes the applications resilient and robust. The main focus of the book is to cover the basic concepts of cloud-based development followed by running solutions in AWS Cloud, which will help the solutions run at scale. This book not only guides you through the trade-offs and ideas behind efficient cloud applications, but is a comprehensive guide to getting the most out of AWS. In the first section, you will begin by looking at the key concepts of AWS, setting up your AWS account, and operating it. This guide also covers cloud service models, which will help you build highly scalable and secure applications on the AWS platform. We will then dive deep into concepts of cloud computing with S3 storage, RDS and EC2. Next, this book will walk you through VPC, building realtime serverless environments, and deploying serverless APIs with microservices. Finally, this book will teach you to monitor your applications, and automate your infrastructure and deploy with CloudFormation. By the end of this book, you will be well-versed with the various services that AWS provides and will be able to leverage AWS infrastructure to accelerate the development process. What you will learn Set up your AWS account and get started with the basic concepts of AWS Learn about AWS terminology and identity access management Acquaint yourself with important elements of the cloud with features such as computing, ELB, and VPC Back up your database and ensure high availability by having an understanding of database-related services in the AWS cloud Integrate AWS services with your application to meet and exceed non-functional requirements Create and automate infrastructure to design cost-effective, highly available applications Who this book is for If you are an I.T. professional or a system architect who wants to improve infrastructure using AWS, then this book is for you. It is also for programmers who are new to AWS and want to build highly efficient, scalable applications.




Data Science on AWS


Book Description

With this practical book, AI and machine learning practitioners will learn how to successfully build and deploy data science projects on Amazon Web Services. The Amazon AI and machine learning stack unifies data science, data engineering, and application development to help level upyour skills. This guide shows you how to build and run pipelines in the cloud, then integrate the results into applications in minutes instead of days. Throughout the book, authors Chris Fregly and Antje Barth demonstrate how to reduce cost and improve performance. Apply the Amazon AI and ML stack to real-world use cases for natural language processing, computer vision, fraud detection, conversational devices, and more Use automated machine learning to implement a specific subset of use cases with SageMaker Autopilot Dive deep into the complete model development lifecycle for a BERT-based NLP use case including data ingestion, analysis, model training, and deployment Tie everything together into a repeatable machine learning operations pipeline Explore real-time ML, anomaly detection, and streaming analytics on data streams with Amazon Kinesis and Managed Streaming for Apache Kafka Learn security best practices for data science projects and workflows including identity and access management, authentication, authorization, and more




The Self-Taught Cloud Computing Engineer


Book Description

Transform into a cloud-savvy professional by mastering cloud technologies through hands-on projects and expert guidance, paving the way for a thriving cloud computing career Key Features Learn all about cloud computing at your own pace with this easy-to-follow guide Develop a well-rounded skill set, encompassing fundamentals, data, machine learning, and security Work on real-world industrial projects and business use cases, and chart a path for your personal cloud career advancement Purchase of the print or Kindle book includes a free PDF eBook Book DescriptionThe Self-Taught Cloud Computing Engineer is a comprehensive guide to mastering cloud computing concepts by building a broad and deep cloud knowledge base, developing hands-on cloud skills, and achieving professional cloud certifications. Even if you’re a beginner with a basic understanding of computer hardware and software, this book serves as the means to transition into a cloud computing career. Starting with the Amazon cloud, you’ll explore the fundamental AWS cloud services, then progress to advanced AWS cloud services in the domains of data, machine learning, and security. Next, you’ll build proficiency in Microsoft Azure Cloud and Google Cloud Platform (GCP) by examining the common attributes of the three clouds while distinguishing their unique features. You’ll further enhance your skills through practical experience on these platforms with real-life cloud project implementations. Finally, you’ll find expert guidance on cloud certifications and career development. By the end of this cloud computing book, you’ll have become a cloud-savvy professional well-versed in AWS, Azure, and GCP, ready to pursue cloud certifications to validate your skills.What you will learn Develop the core skills needed to work with cloud computing platforms such as AWS, Azure, and GCP Gain proficiency in compute, storage, and networking services across multi-cloud and hybrid-cloud environments Integrate cloud databases, big data, and machine learning services in multi-cloud environments Design and develop data pipelines, encompassing data ingestion, storage, processing, and visualization in the clouds Implement machine learning pipelines in a multi-cloud environment Secure cloud infrastructure ecosystems with advanced cloud security services Who this book is for Whether you're new to cloud computing or a seasoned professional looking to expand your expertise, this book is for anyone in the information technology domain who aspires to thrive in the realm of cloud computing. With this comprehensive roadmap, you’ll have the tools to build a successful cloud computing career.




Serverless Analytics with Amazon Athena


Book Description

Get more from your data with Amazon Athena's ease-of-use, interactive performance, and pay-per-query pricing Key FeaturesExplore the promising capabilities of Amazon Athena and Athena's Query Federation SDKUse Athena to prepare data for common machine learning activitiesCover best practices for setting up connectivity between your application and Athena and security considerationsBook Description Amazon Athena is an interactive query service that makes it easy to analyze data in Amazon S3 using SQL, without needing to manage any infrastructure. This book begins with an overview of the serverless analytics experience offered by Athena and teaches you how to build and tune an S3 Data Lake using Athena, including how to structure your tables using open-source file formats like Parquet. You'll learn how to build, secure, and connect to a data lake with Athena and Lake Formation. Next, you'll cover key tasks such as ad hoc data analysis, working with ETL pipelines, monitoring and alerting KPI breaches using CloudWatch Metrics, running customizable connectors with AWS Lambda, and more. Moving on, you'll work through easy integrations, troubleshooting and tuning common Athena issues, and the most common reasons for query failure. You will also review tips to help diagnose and correct failing queries in your pursuit of operational excellence. Finally, you'll explore advanced concepts such as Athena Query Federation and Athena ML to generate powerful insights without needing to touch a single server. By the end of this book, you'll be able to build and use a data lake with Amazon Athena to add data-driven features to your app and perform the kind of ad hoc data analysis that often precedes many of today's ML modeling exercises. What you will learnSecure and manage the cost of querying your dataUse Athena ML and User Defined Functions (UDFs) to add advanced features to your reportsWrite your own Athena Connector to integrate with a custom data sourceDiscover your datasets on S3 using AWS Glue CrawlersIntegrate Amazon Athena into your applicationsSetup Identity and Access Management (IAM) policies to limit access to tables and databases in Glue Data CatalogAdd an Amazon SageMaker Notebook to your Athena queriesGet to grips with using Athena for ETL pipelinesWho this book is for Business intelligence (BI) analysts, application developers, and system administrators who are looking to generate insights from an ever-growing sea of data while controlling costs and limiting operational burden, will find this book helpful. Basic SQL knowledge is expected to make the most out of this book.




Data Analytics in the AWS Cloud


Book Description

A comprehensive and accessible roadmap to performing data analytics in the AWS cloud In Data Analytics in the AWS Cloud: Building a Data Platform for BI and Predictive Analytics on AWS, accomplished software engineer and data architect Joe Minichino delivers an expert blueprint to storing, processing, analyzing data on the Amazon Web Services cloud platform. In the book, you’ll explore every relevant aspect of data analytics—from data engineering to analysis, business intelligence, DevOps, and MLOps—as you discover how to integrate machine learning predictions with analytics engines and visualization tools. You’ll also find: Real-world use cases of AWS architectures that demystify the applications of data analytics Accessible introductions to data acquisition, importation, storage, visualization, and reporting Expert insights into serverless data engineering and how to use it to reduce overhead and costs, improve stability, and simplify maintenance A can't-miss for data architects, analysts, engineers and technical professionals, Data Analytics in the AWS Cloud will also earn a place on the bookshelves of business leaders seeking a better understanding of data analytics on the AWS cloud platform.




AWS Certified Data Analytics Study Guide with Online Labs


Book Description

Virtual, hands-on learning labs allow you to apply your technical skills in realistic environments. So Sybex has bundled AWS labs from XtremeLabs with our popular AWS Certified Data Analytics Study Guide to give you the same experience working in these labs as you prepare for the Certified Data Analytics Exam that you would face in a real-life application. These labs in addition to the book are a proven way to prepare for the certification and for work as an AWS Data Analyst. AWS Certified Data Analytics Study Guide: Specialty (DAS-C01) Exam is intended for individuals who perform in a data analytics-focused role. This UPDATED exam validates an examinee's comprehensive understanding of using AWS services to design, build, secure, and maintain analytics solutions that provide insight from data. It assesses an examinee's ability to define AWS data analytics services and understand how they integrate with each other; and explain how AWS data analytics services fit in the data lifecycle of collection, storage, processing, and visualization. The book focuses on the following domains: • Collection • Storage and Data Management • Processing • Analysis and Visualization • Data Security This is your opportunity to take the next step in your career by expanding and validating your skills on the AWS cloud. AWS is the frontrunner in cloud computing products and services, and the AWS Certified Data Analytics Study Guide: Specialty exam will get you fully prepared through expert content, and real-world knowledge, key exam essentials, chapter review questions, and much more. Written by an AWS subject-matter expert, this study guide covers exam concepts, and provides key review on exam topics. Readers will also have access to Sybex's superior online interactive learning environment and test bank, including chapter tests, practice exams, a glossary of key terms, and electronic flashcards. And included with this version of the book, XtremeLabs virtual labs that run from your browser. The registration code is included with the book and gives you 6 months of unlimited access to XtremeLabs AWS Certified Data Analytics Labs with 3 unique lab modules based on the book.




AWS Certified SysOps Administrator - Associate (SOA-C02) Exam Cram


Book Description

Prepare for AWS Certified SysOps Administrator – Associate (SOA-C02) exam success with this Exam Cram from Pearson IT Certification, a leader in IT certification. This is the eBook edition of the AWS Certified SysOps Administrator – Associate (SOA-C02) Exam Cram. This eBook does not include access to the Pearson Test Prep practice exams that comes with the print edition. AWS Certified SysOps Administrator – Associate (SOA-C02) Exam Cram is an all-inclusive study guide designed to help you pass the updated version of the AWS Certified SysOps Administrator – Associate exam. Prepare for test day success with complete coverage of exam objectives and topics, plus hundreds of realistic practice questions. Extensive prep tools include quizzes, Exam Alerts, and our essential last-minute review CramSheet. Covers the critical information needed to score higher on your AWS Certified SysOps Administrator – Associate (SOA-C02) exam! Demonstrate baseline AWS Well-Architected Framework knowledge to support and maintain AWS workloads Use AWS monitoring and logging services and remediate issues based on monitoring and availability metrics Implement scalability and elasticity for reliability and business continuity Use AWS services to provision, deploy, maintain, and automate cloud resources Implement and manage security controls to meet compliance policies and requirements Implement, configure, and troubleshoot network features and connectivity issues Identify and implement cost and performance optimization strategies




The Machine Learning Solutions Architect Handbook


Book Description

Build highly secure and scalable machine learning platforms to support the fast-paced adoption of machine learning solutions Key Features Explore different ML tools and frameworks to solve large-scale machine learning challenges in the cloud Build an efficient data science environment for data exploration, model building, and model training Learn how to implement bias detection, privacy, and explainability in ML model development Book DescriptionWhen equipped with a highly scalable machine learning (ML) platform, organizations can quickly scale the delivery of ML products for faster business value realization. There is a huge demand for skilled ML solutions architects in different industries, and this handbook will help you master the design patterns, architectural considerations, and the latest technology insights you’ll need to become one. You’ll start by understanding ML fundamentals and how ML can be applied to solve real-world business problems. Once you've explored a few leading problem-solving ML algorithms, this book will help you tackle data management and get the most out of ML libraries such as TensorFlow and PyTorch. Using open source technology such as Kubernetes/Kubeflow to build a data science environment and ML pipelines will be covered next, before moving on to building an enterprise ML architecture using Amazon Web Services (AWS). You’ll also learn about security and governance considerations, advanced ML engineering techniques, and how to apply bias detection, explainability, and privacy in ML model development. By the end of this book, you’ll be able to design and build an ML platform to support common use cases and architecture patterns like a true professional. What you will learn Apply ML methodologies to solve business problems Design a practical enterprise ML platform architecture Implement MLOps for ML workflow automation Build an end-to-end data management architecture using AWS Train large-scale ML models and optimize model inference latency Create a business application using an AI service and a custom ML model Use AWS services to detect data and model bias and explain models Who this book is for This book is for data scientists, data engineers, cloud architects, and machine learning enthusiasts who want to become machine learning solutions architects. You’ll need basic knowledge of the Python programming language, AWS, linear algebra, probability, and networking concepts before you get started with this handbook.