Set Valued Mappings with Applications in Nonlinear Analysis


Book Description

Interest in the mathematical analysis of multi-functions has increased rapidly over the past thirty years, partly because of its applications in fields such as biology, control theory and optimization, economics, game theory, and physics. Set Valued Mappings with Applications to Nonlinear Analysis contains 29 research articles from leading mathematicians in this area. The contributors were invited to submit papers on topics such as integral inclusion, ordinary and partial differential inclusions, fixed point theorems, boundary value problems, and optimal control. This collection will be of interest to researchers in analysis and will pave the way for the creation of new mathematics in the future.




Topological Methods For Set-valued Nonlinear Analysis


Book Description

This book provides a comprehensive overview of the authors' pioneering contributions to nonlinear set-valued analysis by topological methods. The coverage includes fixed point theory, degree theory, the KKM principle, variational inequality theory, the Nash equilibrium point in mathematical economics, the Pareto optimum in optimization, and applications to best approximation theory, partial equations and boundary value problems.Self-contained and unified in presentation, the book considers the existence of equilibrium points of abstract economics in topological vector spaces from the viewpoint of Ky Fan minimax inequalities. It also provides the latest developments in KKM theory and degree theory for nonlinear set-valued mappings.




nonlinear analysis and applications


Book Description

In this innovative work, 43 distinguished contributors present the latest developments together with surveys of the field. Coverage encompasses several closely related disciplines and most of the results shown in this volume are unavailable in any other source. Among the important topics addressed are applications to the theory of ordinary differential equations of generalized order, degree theoretic methods in optimal control, numerical treatment of a nonlinear problem arising in heat transfer, and applications of fixed point theorems to problems in optimization and best approximation. Encouraging interdisciplinary research to stimulate further advances, Nonlinear Analysis and Applications serves as the vital reference for mathematicians, researchers, and graduate students engaged in applied mathematics, engineering, physics, industrial science, economics, optimization, probability, medicinal and operational research, and differential equations. Additionally, it is eminently suitable for use in professional seminars.




Topological Methods for Set-valued Nonlinear Analysis


Book Description

This book provides a comprehensive overview of the authors' pioneering contributions to nonlinear set-valued analysis by topological methods. The coverage includes fixed point theory, degree theory, the KKM principle, variational inequality theory, the Nash equilibrium point in mathematical economics, the Pareto optimum in optimization, and applications to best approximation theory, partial equations and boundary value problems.Self-contained and unified in presentation, the book considers the existence of equilibrium points of abstract economics in topological vector spaces from the viewpoint of Ky Fan minimax inequalities. It also provides the latest developments in KKM theory and degree theory for nonlinear set-valued mappings.




Set-Valued Analysis


Book Description

"An elegantly written, introductory overview of the field, with a near perfect choice of what to include and what not, enlivened in places by historical tidbits and made eminently readable throughout by crisp language. It has succeeded in doing the near-impossible—it has made a subject which is generally inhospitable to nonspecialists because of its ‘family jargon’ appear nonintimidating even to a beginning graduate student." —The Journal of the Indian Institute of Science "The book under review gives a comprehensive treatment of basically everything in mathematics that can be named multivalued/set-valued analysis. ...The book is highly recommended for mathematicians and graduate students who will find here a very comprehensive treatment of set-valued analysis." —Mathematical Reviews "This book provides a thorough introduction to multivalued or set-valued analysis... The style is lively and vigorous, the relevant historical comments and suggestive overviews increase the interest for this work...Graduate students and mathematicians of every persuasion will welcome this unparalleled guide to set-valued analysis." —Zentralblatt Math




Set Valued Mappings with Applications in Nonlinear Analysis


Book Description

Interest in the mathematical analysis of multi-functions has increased rapidly over the past thirty years, partly because of its applications in fields such as biology, control theory and optimization, economics, game theory, and physics. Set Valued Mappings with Applications to Nonlinear Analysis contains 29 research articles from leading mathematicians in this area. The contributors were invited to submit papers on topics such as integral inclusion, ordinary and partial differential inclusions, fixed point theorems, boundary value problems, and optimal control. This collection will be of interest to researchers in analysis and will pave the way for the creation of new mathematics in the future.




KKM Theory and Applications in Nonlinear Analysis


Book Description

This reference provides a lucid introduction to the principles and applications of Knaster-Kuratowski-Mazurkiewicz (KKM) theory and explores related topics in nonlinear set-valued analysis.




Set Valued Mappings with Applications in Nonlinear Analysis


Book Description

Interest in the mathematical analysis of multi-functions has increased rapidly over the past thirty years, partly because of its applications in fields such as biology, control theory and optimization, economics, game theory, and physics. Set Valued Mappings with Applications to Nonlinear Analysis contains 29 research articles from leading mathematicians in this area. The contributors were invited to submit papers on topics such as integral inclusion, ordinary and partial differential inclusions, fixed point theorems, boundary value problems, and optimal control. This collection will be of interest to researchers in analysis and will pave the way for the creation of new mathematics in the future.




Condensing Multivalued Maps and Semilinear Differential Inclusions in Banach Spaces


Book Description

The theory of set-valued maps and of differential inclusion is developed in recent years both as a field of his own and as an approach to control theory. The book deals with the theory of semilinear differential inclusions in infinite dimensional spaces. In this setting, problems of interest to applications do not suppose neither convexity of the map or compactness of the multi-operators. These assumption implies the development of the theory of measure of noncompactness and the construction of a degree theory for condensing mapping. Of particular interest is the approach to the case when the linear part is a generator of a condensing, strongly continuous semigroup. In this context, the existence of solutions for the Cauchy and periodic problems are proved as well as the topological properties of the solution sets. Examples of applications to the control of transmission line and to hybrid systems are presented.




Convex and Set-Valued Analysis


Book Description

This textbook is devoted to a compressed and self-contained exposition of two important parts of contemporary mathematics: convex and set-valued analysis. In the first part, properties of convex sets, the theory of separation, convex functions and their differentiability, properties of convex cones in finite- and infinite-dimensional spaces are discussed. The second part covers some important parts of set-valued analysis. There the properties of the Hausdorff metric and various continuity concepts of set-valued maps are considered. The great attention is paid also to measurable set-valued functions, continuous, Lipschitz and some special types of selections, fixed point and coincidence theorems, covering set-valued maps, topological degree theory and differential inclusions. Contents: Preface Part I: Convex analysis Convex sets and their properties The convex hull of a set. The interior of convex sets The affine hull of sets. The relative interior of convex sets Separation theorems for convex sets Convex functions Closedness, boundedness, continuity, and Lipschitz property of convex functions Conjugate functions Support functions Differentiability of convex functions and the subdifferential Convex cones A little more about convex cones in infinite-dimensional spaces A problem of linear programming More about convex sets and convex hulls Part II: Set-valued analysis Introduction to the theory of topological and metric spaces The Hausdorff metric and the distance between sets Some fine properties of the Hausdorff metric Set-valued maps. Upper semicontinuous and lower semicontinuous set-valued maps A base of topology of the spaceHc(X) Measurable set-valued maps. Measurable selections and measurable choice theorems The superposition set-valued operator The Michael theorem and continuous selections. Lipschitz selections. Single-valued approximations Special selections of set-valued maps Differential inclusions Fixed points and coincidences of maps in metric spaces Stability of coincidence points and properties of covering maps Topological degree and fixed points of set-valued maps in Banach spaces Existence results for differential inclusions via the fixed point method Notation Bibliography Index