Short-Term Forecasting for Empirical Economists


Book Description

Short-term Forecasting for Empirical Economists seeks to close the gap between research and applied short-term forecasting. The authors review some of the key theoretical results and empirical findings in the recent literature on short-term forecasting, and translate these findings into economically meaningful techniques to facilitate their widespread application to compute short-term forecasts in economics, and to monitor the ongoing business cycle developments in real time.




Short-term Forecasting for Empirical Economists


Book Description

Practitioners do not always use research findings, sometimes because the research is not always conducted in a manner relevant to real-world practice. This survey seeks to close the gap between research and practice on short-term forecasting in real time. Towards this end, we review the most relevant recent contributions to the literature, examine their pros and cons, and we take the liberty of proposing some lines of future research. We include bridge equations, MIDAS, VARs, factor models and Markov-switching factor models, all allowing for mixed-frequency and ragged ends. Using the four constituent monthly series of the Stock-Watson coincident index, industrial production, employment, income and sales, we evaluate their empirical performance to forecast quarterly US GDP growth rates in real time. Finally, we review the main results regarding the number of predictors in factor based forecasts and how the selection of the more informative or representative variables can be made.




Understanding Economic Forecasts


Book Description

How to interpret and evaluate economic forecasts and the uncertainties inherent in them.




Handbook of Economic Forecasting


Book Description

The highly prized ability to make financial plans with some certainty about the future comes from the core fields of economics. In recent years the availability of more data, analytical tools of greater precision, and ex post studies of business decisions have increased demand for information about economic forecasting. Volumes 2A and 2B, which follows Nobel laureate Clive Granger's Volume 1 (2006), concentrate on two major subjects. Volume 2A covers innovations in methodologies, specifically macroforecasting and forecasting financial variables. Volume 2B investigates commercial applications, with sections on forecasters' objectives and methodologies. Experts provide surveys of a large range of literature scattered across applied and theoretical statistics journals as well as econometrics and empirical economics journals. The Handbook of Economic Forecasting Volumes 2A and 2B provide a unique compilation of chapters giving a coherent overview of forecasting theory and applications in one place and with up-to-date accounts of all major conceptual issues. - Focuses on innovation in economic forecasting via industry applications - Presents coherent summaries of subjects in economic forecasting that stretch from methodologies to applications - Makes details about economic forecasting accessible to scholars in fields outside economics




Dynamic Factor Models


Book Description

This volume explores dynamic factor model specification, asymptotic and finite-sample behavior of parameter estimators, identification, frequentist and Bayesian estimation of the corresponding state space models, and applications.




Economic Forecasting


Book Description

A comprehensive and integrated approach to economic forecasting problems Economic forecasting involves choosing simple yet robust models to best approximate highly complex and evolving data-generating processes. This poses unique challenges for researchers in a host of practical forecasting situations, from forecasting budget deficits and assessing financial risk to predicting inflation and stock market returns. Economic Forecasting presents a comprehensive, unified approach to assessing the costs and benefits of different methods currently available to forecasters. This text approaches forecasting problems from the perspective of decision theory and estimation, and demonstrates the profound implications of this approach for how we understand variable selection, estimation, and combination methods for forecasting models, and how we evaluate the resulting forecasts. Both Bayesian and non-Bayesian methods are covered in depth, as are a range of cutting-edge techniques for producing point, interval, and density forecasts. The book features detailed presentations and empirical examples of a range of forecasting methods and shows how to generate forecasts in the presence of large-dimensional sets of predictor variables. The authors pay special attention to how estimation error, model uncertainty, and model instability affect forecasting performance. Presents a comprehensive and integrated approach to assessing the strengths and weaknesses of different forecasting methods Approaches forecasting from a decision theoretic and estimation perspective Covers Bayesian modeling, including methods for generating density forecasts Discusses model selection methods as well as forecast combinations Covers a large range of nonlinear prediction models, including regime switching models, threshold autoregressions, and models with time-varying volatility Features numerous empirical examples Examines the latest advances in forecast evaluation Essential for practitioners and students alike




The Economics of Artificial Intelligence


Book Description

A timely investigation of the potential economic effects, both realized and unrealized, of artificial intelligence within the United States healthcare system. In sweeping conversations about the impact of artificial intelligence on many sectors of the economy, healthcare has received relatively little attention. Yet it seems unlikely that an industry that represents nearly one-fifth of the economy could escape the efficiency and cost-driven disruptions of AI. The Economics of Artificial Intelligence: Health Care Challenges brings together contributions from health economists, physicians, philosophers, and scholars in law, public health, and machine learning to identify the primary barriers to entry of AI in the healthcare sector. Across original papers and in wide-ranging responses, the contributors analyze barriers of four types: incentives, management, data availability, and regulation. They also suggest that AI has the potential to improve outcomes and lower costs. Understanding both the benefits of and barriers to AI adoption is essential for designing policies that will affect the evolution of the healthcare system.




Applied Economic Forecasting Using Time Series Methods


Book Description

Economic forecasting is a key ingredient of decision making in the public and private sectors. This book provides the necessary tools to solve real-world forecasting problems using time-series methods. It targets undergraduate and graduate students as well as researchers in public and private institutions interested in applied economic forecasting.




Forecasting Economic Time Series


Book Description

This book provides a formal analysis of the models, procedures, and measures of economic forecasting with a view to improving forecasting practice. David Hendry and Michael Clements base the analyses on assumptions pertinent to the economies to be forecast, viz. a non-constant, evolving economic system, and econometric models whose form and structure are unknown a priori. The authors find that conclusions which can be established formally for constant-parameter stationary processes and correctly-specified models often do not hold when unrealistic assumptions are relaxed. Despite the difficulty of proceeding formally when models are mis-specified in unknown ways for non-stationary processes that are subject to structural breaks, Hendry and Clements show that significant insights can be gleaned. For example, a formal taxonomy of forecasting errors can be developed, the role of causal information clarified, intercept corrections re-established as a method for achieving robustness against forms of structural change, and measures of forecast accuracy re-interpreted.




Inflation Expectations


Book Description

Inflation is regarded by the many as a menace that damages business and can only make life worse for households. Keeping it low depends critically on ensuring that firms and workers expect it to be low. So expectations of inflation are a key influence on national economic welfare. This collection pulls together a galaxy of world experts (including Roy Batchelor, Richard Curtin and Staffan Linden) on inflation expectations to debate different aspects of the issues involved. The main focus of the volume is on likely inflation developments. A number of factors have led practitioners and academic observers of monetary policy to place increasing emphasis recently on inflation expectations. One is the spread of inflation targeting, invented in New Zealand over 15 years ago, but now encompassing many important economies including Brazil, Canada, Israel and Great Britain. Even more significantly, the European Central Bank, the Bank of Japan and the United States Federal Bank are the leading members of another group of monetary institutions all considering or implementing moves in the same direction. A second is the large reduction in actual inflation that has been observed in most countries over the past decade or so. These considerations underscore the critical – and largely underrecognized - importance of inflation expectations. They emphasize the importance of the issues, and the great need for a volume that offers a clear, systematic treatment of them. This book, under the steely editorship of Peter Sinclair, should prove very important for policy makers and monetary economists alike.