Digital Signal Processing Techniques and Applications in Radar Image Processing


Book Description

A self-contained approach to DSP techniques and applications in radar imaging The processing of radar images, in general, consists of three major fields: Digital Signal Processing (DSP); antenna and radar operation; and algorithms used to process the radar images. This book brings together material from these different areas to allow readers to gain a thorough understanding of how radar images are processed. The book is divided into three main parts and covers: * DSP principles and signal characteristics in both analog and digital domains, advanced signal sampling, and interpolation techniques * Antenna theory (Maxwell equation, radiation field from dipole, and linear phased array), radar fundamentals, radar modulation, and target-detection techniques (continuous wave, pulsed Linear Frequency Modulation, and stepped Frequency Modulation) * Properties of radar images, algorithms used for radar image processing, simulation examples, and results of satellite image files processed by Range-Doppler and Stolt interpolation algorithms The book fully utilizes the computing and graphical capability of MATLAB? to display the signals at various processing stages in 3D and/or cross-sectional views. Additionally, the text is complemented with flowcharts and system block diagrams to aid in readers' comprehension. Digital Signal Processing Techniques and Applications in Radar Image Processing serves as an ideal textbook for graduate students and practicing engineers who wish to gain firsthand experience in applying DSP principles and technologies to radar imaging.




Signal Processing Techniques for Power Efficient Wireless Communication Systems


Book Description

This book presents a synthesis of the research carried out in the Laboratory of Signal Processing and Communications (LaPSyC), CONICET, Universidad Nacional del Sur, Argentina, since 2003. It presents models and techniques widely used by the signal processing community, focusing on low-complexity methodologies that are scalable to different applications. It also highlights measures of the performance and impact of each compensation technique. The book is divided into three parts: 1) basic models 2) compensation techniques and 3) applications in advanced technologies. The first part addresses basic architectures of transceivers, their component blocks and modulation techniques. It also describes the performance to be taken into account, regardless of the distortions that need to be compensated. In the second part, several schemes of compensation and/or reduction of imperfections are explored, including linearization of power amplifiers, compensation of the characteristics of analog-to- digital converters and CFO compensation for OFDM modulation. The third and last part demonstrates the use of some of these techniques in modern wireless-communication systems, such as full-duplex transmission, massive MIMO schemes and Internet of Things applications.




Signal Processing for Mobile Communications Handbook


Book Description

In recent years, a wealth of research has emerged addressing various aspects of mobile communications signal processing. New applications and services are continually arising, and future mobile communications offer new opportunities and exciting challenges for signal processing. The Signal Processing for Mobile Communications Handbook provi




Signal Processing for Wireless Communications


Book Description

Master the Signal Processing Concepts and Techniques Needed to Design and Operate Any Wireless Communications Network Signal Processing for Wireless Communications offers communications engineers an application-focused guide to the essential concepts and techniques of wireless signal processing. This comprehensive reference examines the role that key algorithms and standard migration paths play in the design and day-to-day operations of today's state-of-the-art wireless networks. Written by Dr. Joseph Boccuzzi, a leading signal processing expert with years of product development, research, and teaching experience, this on-target engineering tool takes readers step by step through major wireless topics...modulation theory...wireless multipath channel...modulation detection methods...performance improvement techniques...receiver digital signal processing...3G wideband CDMA...computer simulation estimation techniques...and 3G and beyond. Designed to bring engineers up to speed on the latest breakthroughs in signal processing technology, Signal Processing for Wireless Communications features: Expert coverage of 3G wideband CDMA Discussion of the role OFDM will play in future technologies Complete information on the role of vital signal processing algorithms within the context of wireless applications Discussions of advanced signal processing challenges in the mobile environment Over 500 detailed illustrations Inside This Hands-On Signal Processing Guide • Wireless Topics • Modulation Theory • Wireless Multipath Channel • Modulation Detection Techniques • Performance Improvement Techniques • Receiver Digital Signal Processing • 3G Wideband CDMA • Computer Simulation Estimation Techniques • 3G and Beyond




Digital Signal Processing for Wireless Communication using Matlab


Book Description

This book examines signal processing techniques used in wireless communication illustrated by using the Matlab program. The author discusses these techniques as they relate to Doppler spread, Delay spread, Rayleigh and Rician channel modeling, rake receiver, diversity techniques, MIMO and OFDM based transmission techniques, and array signal processing. Related topics such as detection theory, Link budget, Multiple access techniques, spread spectrum, are also covered. • Illustrates signal processing techniques involved in wireless communication • Discusses multiple access techniques such as Frequency division multiple access, Time division multiple access, and Code division multiple access • Covers band pass modulation techniques such as Binary phase shift keying, Differential phase shift keying, Quadrature phase shift keying, Binary frequency shift keying, Minimum shift keying, and Gaussian minimum shift keying.




Digital Signal Processing in Communications Systems


Book Description

An engineer's introduction to concepts, algorithms, and advancements in Digital Signal Processing. This lucidly written resource makes extensive use of real-world examples as it covers all the important design and engineering references.




Intelligent Speech Signal Processing


Book Description

Intelligent Speech Signal Processing investigates the utilization of speech analytics across several systems and real-world activities, including sharing data analytics, creating collaboration networks between several participants, and implementing video-conferencing in different application areas. Chapters focus on the latest applications of speech data analysis and management tools across different recording systems. The book emphasizes the multidisciplinary nature of the field, presenting different applications and challenges with extensive studies on the design, development and management of intelligent systems, neural networks and related machine learning techniques for speech signal processing.




Signal Processing Techniques for Communication


Book Description

The reference text discusses signal processing tools and techniques used for the design, testing, and deployment of communication systems. It further explores software simulation and modeling tools like MATLAB, GNU Octave, Mathematica, and Python for modeling, simulation, and detailed analysis leading to comprehensive insights into communication systems. The book explains topics such as source coding, pulse demodulation systems, and the principle of sampling and aliasing. This book: Discusses modern techniques including analog and digital filter design, and modulation principles including quadrature amplitude modulation, and differential phase shift keying. Covers filter design using MATLAB, system simulation using Simulink, signal processing toolbox, linear time-invariant systems, and non-linear time-variant systems. Explains important pulse keying techniques including Gaussian minimum shift keying and quadrature phase shift keying. Presents signal processing tools and techniques for communication systems design, modeling, simulation, and deployment. Illustrates topics such as software-defined radio (SDR) systems, spectrum sensing, and automated modulation sensing. The text is primarily written for senior undergraduates, graduate students, and academic researchers in the fields of electrical engineering, electronics and communication engineering, computer science, and engineering.




Multirate Signal Processing For Communication Systems


Book Description

This Book Provides The Communications Engineer Involved In The Physical Layer Of Communications Systems, The Signal Processing Techniques And Design Tools Needed To Develop Efficient Algorithms For The Design Of Various Systems. These Systems Include Satellite Modems, Cable Modems, Wire-Line Modems, Cell-Phones, Various Radios, Multi-Channel Receivers, Audio Encoders, Surveillance Receivers, Laboratory Instruments, And Various Sonar And Radar Systems. The Emphasis Woven Through The Book Material Is That Of Intuitive Understanding Obtained By The Liberal Use Of Figures And Examples. The Book Contains Examples Of All These Types Of Systems. The Book Also Will Contain Matlab Script Files That Implement The Examples As Well As Design Tools For Filters Similar To The Examples.




Signal Processing for Communications


Book Description

With a novel, less classical approach to the subject, the authors have written a book with the conviction that signal processing should be taught to be fun. The treatment is therefore less focused on the mathematics and more on the conceptual aspects, the idea being to allow the readers to think about the subject at a higher conceptual level, thus building the foundations for more advanced topics. The book remains an engineering text, with the goal of helping students solve real-world problems. In this vein, the last chapter pulls together the individual topics as discussed throughout the book into an in-depth look at the development of an end-to-end communication system, namely, a modem for communicating digital information over an analog channel.