Single-stranded RNA phages


Book Description

This is a comprehensive guide to single-stranded RNA phages (family Leviviridae), first discovered in 1961. These phages played a unique role in early studies of molecular biology, the genetic code, translation, replication, suppression of mutations. Special attention is devoted to modern applications of the RNA phages and their products in nanotechnology, vaccinology, gene discovery, evolutionary and environmental studies. Included is an overview of the generation of novel vaccines, gene therapy vectors, drug delivery, and diagnostic tools exploring the role of RNA phage-derived products in the revolutionary progress of the protein tethering and bioimaging protocols. Key Features Presents the first full guide to single-stranded RNA phages Reviews the history of molecular biology summarizing the role RNA phages in the development of the life sciences Demonstrates how RNA phage-derived products have resulted in nanotechnological applications Presents an up-to-date account of the role played by RNA phages in evolutionary and environmental studies




The Bacteriophages


Book Description

It has been 10 years since Plenum included a series of reviews on bacte riophages, in Comprehensive Virology. Chapters in that series contained physical-genetic maps but very little DNA sequence information. Now the complete DNA sequence is known for some phages, and the se quences for others will soon follow. During the past 10 years two phages have come into common use as reagents: A phage for cloning single copies of genes, and Ml3 for cloning and DNA sequencing by the dideoxy termi nation method. Also during that period the use of alternative sigma fac tors by RNA polymerase has become established for SPOl and T4. This seems to be a widely used mechanism in bacteria, since it has been implicated in sporulation, heat shock response, and regulation of nitro gen metabolism. The control of transcription by the binding of A phage CII protein to the -35 region of the promoter is a recent finding, and it is not known how widespread this mechanism may be. This rapid progress made me eager to solicit a new series of reviews. These contributions are of two types. Each of the first type deals with an issue that is exemplified by many kinds of phages; chapters of this type should be useful in teaching advanced courses. Chapters of the second type provide comprehensive pictures of individual phage families and should provide valuable information for use in planning experiments.




Virus Protein and Nucleoprotein Complexes


Book Description

The Subcellular Biochemistry series has recently embarked upon an almost encyclopaedic coverage of topics relating to the structure and function of macromolecular complexes (Volumes 82, 83 and 87). The present multi-author text covers numerous aspects of current research into molecular virology, with emphasis upon viral protein and nucleoprotein structure and function. Structural data from cryo-electron microscopy and X-ray crystallography is displayed throughout the book. The 17 chapters in the book cover diverse interesting topics, all currently under investigation, contributed by authors who are active actively involved in present-day research. Whilst structural aspects predominate, there is much consideration of the structure-function relationship. In addition, the book correlates with and extends from Volume 68 of the series “Structure and Physics of Viruses: An Integrated Textbook”. This book is directed primarily at professionals that work in the broad field of Structural Biology and will be of particular interest to Structural Virologists. The editors, David Bhella and Robin Harris, have much experience in virology and protein structure, respectively. Dr Bhella is Director of the Scottish Macromolecular Imaging Centre. Professor Robin Harris is the long-standing Series Editor of the Subcellular Biochemistry series. He has edited and contributed to several books in the series.




Bacteriophages


Book Description

This first major reference work dedicated to the mannifold industrial and medical applications of bacteriophages provides both theoretical and practical insights into the emerging field of bacteriophage biotechnology. The book introduces to bacteriophage biology, ecology and history and reviews the latest technologies and tools in bacteriophage detection, strain optimization and nanotechnology. Usage of bacteriophages in food safety, agriculture, and different therapeutic areas is discussed in detail. This book serves as essential guide for researchers in applied microbiology, biotechnology and medicine coming from both academia and industry.




Origin and Evolution of Viruses


Book Description

New viral diseases are emerging continuously. Viruses adapt to new environments at astounding rates. Genetic variability of viruses jeopardizes vaccine efficacy. For many viruses mutants resistant to antiviral agents or host immune responses arise readily, for example, with HIV and influenza. These variations are all of utmost importance for human and animal health as they have prevented us from controlling these epidemic pathogens. This book focuses on the mechanisms that viruses use to evolve, survive and cause disease in their hosts. Covering human, animal, plant and bacterial viruses, it provides both the basic foundations for the evolutionary dynamics of viruses and specific examples of emerging diseases. - NEW - methods to establish relationships among viruses and the mechanisms that affect virus evolution - UNIQUE - combines theoretical concepts in evolution with detailed analyses of the evolution of important virus groups - SPECIFIC - Bacterial, plant, animal and human viruses are compared regarding their interation with their hosts




Lesser Known Large dsDNA Viruses


Book Description

Several large dsDNA-containing viruses such as poxviruses (smallpox) and herpes viruses are well known among the scientific community, as well as the general populace, because they cause human diseases. The large dsDNA insect-infecting baculoviruses are also well known in the scientific community because they are used both as biological control agents and as protein expression systems. However, there are other large dsDNA-containing viruses, including the giant 1.2 Mb mimivirus, which are less well known despite the fact that all of them play important roles in every day life. Seven of these virus families are reviewed in this book.




Bacteriophages


Book Description

Bacteriophages are viruses that utilise bacterial cells as factories for their own propagation and as safe havens for their genomic material. They are capable of equipping bacteria with properties that bestow environmental advantages. They are also capable of specifically and efficiently killing bacteria.Bacteriophages are resilient in a wide diversity of environments, presumed to be as ancient as life itself, and are estimated to be the most numerous biological entities on the planet. Their overarching capacity to survive via molecular adaptation is supported by an arsenal of encoded enzymatic tools, which also enabled biotechnology. This volume includes contributions that describe bacteriophages as nanomachines, genetic engineers, and also as medicines and technologies of the future, including relevant production and process issues.




CRISPR-Cas Systems


Book Description

CRISPR/Cas is a recently described defense system that protects bacteria and archaea against invasion by mobile genetic elements such as viruses and plasmids. A wide spectrum of distinct CRISPR/Cas systems has been identified in at least half of the available prokaryotic genomes. On-going structural and functional analyses have resulted in a far greater insight into the functions and possible applications of these systems, although many secrets remain to be discovered. In this book, experts summarize the state of the art in this exciting field.




Virus Structure


Book Description

Virus Structure covers the full spectrum of modern structural virology. Its goal is to describe the means for defining moderate to high resolution structures and the basic principles that have emerged from these studies. Among the topics covered are Hybrid Vigor, Structural Folds of Viral Proteins, Virus Particle Dynamics, Viral Gemone Organization, Enveloped Viruses and Large Viruses. - Covers viral assembly using heterologous expression systems and cell extracts - Discusses molecular mechanisms in bacteriophage T7 procapsid assembly, maturation and DNA containment - Includes information on structural studies on antibody/virus complexes




Genome Stability


Book Description

Genome Stability: From Virus to Human Application, Second Edition, a volume in the Translational Epigenetics series, explores how various species maintain genome stability and genome diversification in response to environmental factors. Here, across thirty-eight chapters, leading researchers provide a deep analysis of genome stability in DNA/RNA viruses, prokaryotes, single cell eukaryotes, lower multicellular eukaryotes, and mammals, examining how epigenetic factors contribute to genome stability and how these species pass memories of encounters to progeny. Topics also include major DNA repair mechanisms, the role of chromatin in genome stability, human diseases associated with genome instability, and genome stability in response to aging. This second edition has been fully revised to address evolving research trends, including CRISPRs/Cas9 genome editing; conventional versus transgenic genome instability; breeding and genetic diseases associated with abnormal DNA repair; RNA and extrachromosomal DNA; cloning, stem cells, and embryo development; programmed genome instability; and conserved and divergent features of repair. This volume is an essential resource for geneticists, epigeneticists, and molecular biologists who are looking to gain a deeper understanding of this rapidly expanding field, and can also be of great use to advanced students who are looking to gain additional expertise in genome stability. - A deep analysis of genome stability research from various kingdoms, including epigenetics and transgenerational effects - Provides comprehensive coverage of mechanisms utilized by different organisms to maintain genomic stability - Contains applications of genome instability research and outcomes for human disease - Features all-new chapters on evolving areas of genome stability research, including CRISPRs/Cas9 genome editing, RNA and extrachromosomal DNA, programmed genome instability, and conserved and divergent features of repair




Recent Books