Singular Elliptic Problems


Book Description




Elliptic Problems in Nonsmooth Domains


Book Description

Originally published: Boston: Pitman Advanced Pub. Program, 1985.




Elliptic Equations: An Introductory Course


Book Description

The aim of this book is to introduce the reader to different topics of the theory of elliptic partial differential equations by avoiding technicalities and refinements. Apart from the basic theory of equations in divergence form it includes subjects such as singular perturbation problems, homogenization, computations, asymptotic behaviour of problems in cylinders, elliptic systems, nonlinear problems, regularity theory, Navier-Stokes system, p-Laplace equation. Just a minimum on Sobolev spaces has been introduced, and work or integration on the boundary has been carefully avoided to keep the reader's attention on the beauty and variety of these issues. The chapters are relatively independent of each other and can be read or taught separately. Numerous results presented here are original and have not been published elsewhere. The book will be of interest to graduate students and faculty members specializing in partial differential equations.




Variational Methods


Book Description

Hilbert's talk at the second International Congress of 1900 in Paris marked the beginning of a new era in the calculus of variations. A development began which, within a few decades, brought tremendous success, highlighted by the 1929 theorem of Ljusternik and Schnirelman on the existence of three distinct prime closed geodesics on any compact surface of genus zero, and the 1930/31 solution of Plateau's problem by Douglas and Radò. The book gives a concise introduction to variational methods and presents an overview of areas of current research in this field. This new edition has been substantially enlarged, a new chapter on the Yamabe problem has been added and the references have been updated. All topics are illustrated by carefully chosen examples, representing the current state of the art in their field.




The Finite Element Method for Elliptic Problems


Book Description

The objective of this book is to analyze within reasonable limits (it is not a treatise) the basic mathematical aspects of the finite element method. The book should also serve as an introduction to current research on this subject. On the one hand, it is also intended to be a working textbook for advanced courses in Numerical Analysis, as typically taught in graduate courses in American and French universities. For example, it is the author's experience that a one-semester course (on a three-hour per week basis) can be taught from Chapters 1, 2 and 3 (with the exception of Section 3.3), while another one-semester course can be taught from Chapters 4 and 6. On the other hand, it is hoped that this book will prove to be useful for researchers interested in advanced aspects of the numerical analysis of the finite element method. In this respect, Section 3.3, Chapters 5, 7 and 8, and the sections on "Additional Bibliography and Comments should provide many suggestions for conducting seminars.




Elliptic and Parabolic Problems


Book Description

Haim Brezis has made significant contributions in the fields of partial differential equations and functional analysis, and this volume collects contributions by his former students and collaborators in honor of his 60th anniversary at a conference in Gaeta. It presents new developments in the theory of partial differential equations with emphasis on elliptic and parabolic problems.




Nonlinear Elliptic and Parabolic Problems


Book Description

Celebrates the work of the renowned mathematician Herbert Amann, who had a significant and decisive influence in shaping Nonlinear Analysis. Containing 32 contributions, this volume covers a range of nonlinear elliptic and parabolic equations, with applications to natural sciences and engineering.




Difference Methods for Singular Perturbation Problems


Book Description

Difference Methods for Singular Perturbation Problems focuses on the development of robust difference schemes for wide classes of boundary value problems. It justifies the ε-uniform convergence of these schemes and surveys the latest approaches important for further progress in numerical methods. The first part of the book e




Singular Integral Equations


Book Description

DIVHigh-level treatment of one-dimensional singular integral equations covers Holder Condition, Hilbert and Riemann-Hilbert problems, Dirichlet problem, more. 1953 edition. /div




Recent developments in the Navier-Stokes problem


Book Description

The Navier-Stokes equations: fascinating, fundamentally important, and challenging,. Although many questions remain open, progress has been made in recent years. The regularity criterion of Caffarelli, Kohn, and Nirenberg led to many new results on existence and non-existence of solutions, and the very active search for mild solutions in the 1990's culminated in the theorem of Koch and Tataru that, in some ways, provides a definitive answer. Recent Developments in the Navier-Stokes Problem brings these and other advances together in a self-contained exposition presented from the perspective of real harmonic analysis. The author first builds a careful foundation in real harmonic analysis, introducing all the material needed for his later discussions. He then studies the Navier-Stokes equations on the whole space, exploring previously scattered results such as the decay of solutions in space and in time, uniqueness, self-similar solutions, the decay of Lebesgue or Besov norms of solutions, and the existence of solutions for a uniformly locally square integrable initial value. Many of the proofs and statements are original and, to the extent possible, presented in the context of real harmonic analysis. Although the existence, regularity, and uniqueness of solutions to the Navier-Stokes equations continue to be a challenge, this book is a welcome opportunity for mathematicians and physicists alike to explore the problem's intricacies from a new and enlightening perspective.