Social Networks: Analysis and Case Studies


Book Description

The present volume provides a comprehensive resource for practitioners and researchers alike-both those new to the field as well as those who already have some experience. The work covers Social Network Analysis theory and methods with a focus on current applications and case studies applied in various domains such as mobile networks, security, machine learning and health. With the increasing popularity of Web 2.0, social media has become a widely used communication platform. Parallel to this development, Social Network Analysis gained in importance as a research field, while opening up many opportunities in different application domains. Forming a bridge between theory and applications makes this work appealing to both academics and practitioners as well as graduate students.




Social Network Analysis


Book Description

The book addresses the issue of interdisciplinary understanding of collaboration on the topic of social network studies. Researchers and practitioners from various disciplines including sociology, computer science, socio-psychology, public health, complex systems, and management science have worked largely independently, each with quite different principles, terminologies, theories. and methodologies. The book aims to fill the gap among these disciplines with a number of the latest interdisciplinary collaboration studies.




Applications of Social Media and Social Network Analysis


Book Description

This collection of contributed chapters demonstrates a wide range of applications within two overlapping research domains: social media analysis and social network analysis. Various methodologies were utilized in the twelve individual chapters including static, dynamic and real-time approaches to graph, textual and multimedia data analysis. The topics apply to reputation computation, emotion detection, topic evolution, rumor propagation, evaluation of textual opinions, friend ranking, analysis of public transportation networks, diffusion in dynamic networks, analysis of contributors to communities of open source software developers, biometric template generation as well as analysis of user behavior within heterogeneous environments of cultural educational centers. Addressing these challenging applications is what makes this edited volume of interest to researchers and students focused on social media and social network analysis.




Analyzing Social Media Networks with NodeXL


Book Description

Analyzing Social Media Networks with NodeXL offers backgrounds in information studies, computer science, and sociology. This book is divided into three parts: analyzing social media, NodeXL tutorial, and social-media network analysis case studies. Part I provides background in the history and concepts of social media and social networks. Also included here is social network analysis, which flows from measuring, to mapping, and modeling collections of connections. The next part focuses on the detailed operation of the free and open-source NodeXL extension of Microsoft Excel, which is used in all exercises throughout this book. In the final part, each chapter presents one form of social media, such as e-mail, Twitter, Facebook, Flickr, and Youtube. In addition, there are descriptions of each system, the nature of networks when people interact, and types of analysis for identifying people, documents, groups, and events. - Walks you through NodeXL, while explaining the theory and development behind each step, providing takeaways that can apply to any SNA - Demonstrates how visual analytics research can be applied to SNA tools for the mass market - Includes case studies from researchers who use NodeXL on popular networks like email, Facebook, Twitter, and wikis - Download companion materials and resources at https://nodexl.codeplex.com/documentation




Communities and Networks


Book Description

In Communities and Networks, Katherine Giuffre takes the science of social network analysis and applies it to key issues of living in communities, especially in urban areas, exploring questions such as: How do communities shape our lives and identities? How do they foster either conformity or innovation? What holds communities together and what happens when they fragment or fall apart? How is community life changing in response to technological advances? Refreshingly accessible and built on fascinating case examples, this unique book provides not only the theoretical grounding necessary to understand how and why the burgeoning area of social network analysis can be useful in studying communities, but also clear technical explanations of the tools of network analysis and how to gather and analyze real-world network data. Network analysis allows us to see community life in a new perspective, with sometimes surprising results and insights, and this book enables readers to gain a deeper understanding of social life and the relationships that build (and break) communities. This engaging text will be an exciting new resource for upper-level undergraduate and beginning graduate students in a wide range of courses including social network analysis, community studies, urban studies, organizational studies, and quantitative methods.




Practical Social Network Analysis with Python


Book Description

This book focuses on social network analysis from a computational perspective, introducing readers to the fundamental aspects of network theory by discussing the various metrics used to measure the social network. It covers different forms of graphs and their analysis using techniques like filtering, clustering and rule mining, as well as important theories like small world phenomenon. It also presents methods for identifying influential nodes in the network and information dissemination models. Further, it uses examples to explain the tools for visualising large-scale networks, and explores emerging topics like big data and deep learning in the context of social network analysis. With the Internet becoming part of our everyday lives, social networking tools are used as the primary means of communication. And as the volume and speed of such data is increasing rapidly, there is a need to apply computational techniques to interpret and understand it. Moreover, relationships in molecular structures, co-authors in scientific journals, and developers in a software community can also be understood better by visualising them as networks. This book brings together the theory and practice of social network analysis and includes mathematical concepts, computational techniques and examples from the real world to offer readers an overview of this domain.




Handbook of Social Network Technologies and Applications


Book Description

Social networking is a concept that has existed for a long time; however, with the explosion of the Internet, social networking has become a tool for people to connect and communicate in ways that were impossible in the past. The recent development of Web 2.0 has provided many new applications, such as Myspace, Facebook, and LinkedIn. The purpose of Handbook of Social Network Technologies and Applications is to provide comprehensive guidelines on the current and future trends in social network technologies and applications in the field of Web-based Social Networks. This handbook includes contributions from world experts in the field of social networks from both academia and private industry. A number of crucial topics are covered including Web and software technologies and communication technologies for social networks. Web-mining techniques, visualization techniques, intelligent social networks, Semantic Web, and many other topics are covered. Standards for social networks, case studies, and a variety of applications are covered as well.




The Oxford Handbook of Social Networks


Book Description

While some social scientists may argue that we have always been networked, the increased visibility of networks today across economic, political, and social domains can hardly be disputed. Social networks fundamentally shape our lives and social network analysis has become a vibrant, interdisciplinary field of research. In The Oxford Handbook of Social Networks, Ryan Light and James Moody have gathered forty leading scholars in sociology, archaeology, economics, statistics, and information science, among others, to provide an overview of the theory, methods, and contributions in the field of social networks. Each of the thirty-three chapters in this Handbook moves through the basics of social network analysis aimed at those seeking an introduction to advanced and novel approaches to modeling social networks statistically. They cover both a succinct background to, and future directions for, distinctive approaches to analyzing social networks. The first section of the volume consists of theoretical and methodological approaches to social networks, such as visualization and network analysis, statistical approaches to networks, and network dynamics. Chapters in the second section outline how network perspectives have contributed substantively across numerous fields, including public health, political analysis, and organizational studies. Despite the rapid spread of interest in social network analysis, few volumes capture the state-of-the-art theory, methods, and substantive contributions featured in this volume. This Handbook therefore offers a valuable resource for graduate students and faculty new to networks looking to learn new approaches, scholars interested in an overview of the field, and network analysts looking to expand their skills or substantive areas of research.




Influence and Behavior Analysis in Social Networks and Social Media


Book Description

This timely book focuses on influence and behavior analysis in the broader context of social network applications and social media. Twitter accounts of telecommunications companies are analyzed. Rumor sources in finite graphs with boundary effects by message-passing algorithms are identified. The coherent, state-of-the-art collection of chapters was initially selected based on solid reviews from the IEEE/ACM International Conference on Advances in Social Networks, Analysis, and Mining (ASONAM '17). Chapters were then improved and extended substantially, and the final versions were rigorously reviewed and revised to meet the series standards. Original chapters coming from outside of the meeting round out the coverage. The result will appeal to researchers and students working in social network and social media analysis.




Perspectives on Social Network Research


Book Description

Perspectives on Social Network Research covers the proceedings of the Mathematical Social Science Board's Advanced Research Symposium on Social Networks held at Dartmouth College, Hanover, New Hampshire, on September 18-21, 1975. This symposium was organized to survey research on social networks as well as review and criticize major research thrusts involving network studies of social behavior. The book covers topics such as the Davis/Holland/Leinhardt studies, structural sociometry, network analysis of the diffusion of innovations, and the deterministic models of social networks. Also covered are topics such as structural control models for group processes, social clusters and opinion clusters, equilibrating processes in social networks, and estimation of population totals by use of snowball samples. The text is recommended for sociologists, anthropologists, and psychologists, especially those who would like to know more about social network and are currently engaged in research in that particular field.