Soft Matter Gradient Surfaces


Book Description

A comprehensive look at the latest advances in soft material gradients Tremendous progress has been made in the field of surface-bound soft material gradients in recent years, with intriguing new areas of investigation opening up and advances in bioanalytics changing the way high-throughput screening methods are used in the design and discovery of catalysts and new materials. This volume provides the first complete, up-to-date summary of the progress in this field, showing readers how to harness the powerful properties of soft matter gradients in the design and development of modern functional materials. Contributed chapters from experts in diverse fields help bridge areas of materials science, chemistry, and biomaterials, covering fabrication techniques, gradients in self-assembled monolayers, polymer gradients, dynamic gradient structures, structure and assembly, mechanical properties, sensors, biomaterial applications, protein adsorption, and organization of cells on gradient surfaces. Readers will learn how to implement the techniques described in the book in their own work, while improving efficacy and lowering research and production costs. Soft Matter Gradient Surfaces is an invaluable resource for chemists, physicists, biologists, and engineers, and anyone who would like to take advantage of these unique soft matter building blocks.




Tailoring Surfaces


Book Description

The focus of the book is the modification of surfaces to tailor them for a specific purpose. Using this method of surface modification, materials chosen for their bulk properties (tensile strength, temperature stability, density, price can be optimized for any particular application, which can lead to improved hardness, biological inertness or activity, corrosion resistance, low or high friction or adhesion, water repellency or wettability, or catalytic activity. The works of the author — many of his crucial papers are included — touches upon these surface properties and spans fields including catalysis, analytical surface science, self-assembled monolayers, tribology, biomaterials, superhydrophobicity and polymer coatings.




Antifouling Surfaces and Materials


Book Description

This book reviews the development of antifouling surfaces and materials for both land and marine environments, with an emphasis on marine anti biofouling. It explains the differences and intrinsic relationship between antifouling in land and marine environments, which are based on superhydrophobicity and superhydrophilicity respectively. It covers various topics including biomimetic antifouling and self-cleaning surfaces, grafted polymer brushes and micro/nanostructure surfaces with antifouling properties, as well as marine anti biofouling. Marine anti biofouling includes both historical biocidal compounds (tributyltin, copper and zinc) and current green, non-toxic antifouling strategies. This book is intended for those readers who are interested in grasping the fundamentals and applications of antifouling. Feng Zhou is a professor at the State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences.




Advanced Surfaces for Stem Cell Research


Book Description

The book outlines first the importance of Extra Cellular Matrix (ECM), which is a natural surface for most of cells. In the following chapters the influence of biological, chemical, mechanical, and physical properties of surfaces in micro and nano-scale on stem cell behavior are discussed including the mechanotransduction. Biomimetic and bioinspired approaches are highlighted for developing microenvironment of several tissues, and surface engineering applications are discussed in tissue engineering, regenerative medicine and different type of biomaterials in various chapters of the book. This book brings together innovative methodologies and strategies adopted in the research and development of Advanced Surfaces in Stem Cell Research. Well-known worldwide researchers deliberate subjects including: Extracellular matrix proteins for stem cell fate The superficial mechanical and physical properties of matrix microenvironment as stem cell fate regulator Effects of mechanotransduction on stem cell behavior Modulation of stem cells behavior through bioactive surfaces Influence of controlled micro and nanoengineered surfaces on stem cell fate Nanostructured polymeric surfaces for stem cells Laser surface modification techniques and stem cells applications Plasma polymer deposition: a versatile tool for stem cell research Application of bioreactor concept and modeling techniques in bone regeneration and augmentation treatments Substrates and surfaces for control of pluripotent stem cell fate and function Application of biopolymer-based, surface modified devices in transplant medicine and tissue engineering Silk as a natural biopolymer for tissue engineering




Wrinkled Polymer Surfaces


Book Description

This book presents the state of the art in surface wrinkling, including current and future potential applications in biomedicine, tissue engineering, drug delivery, microfluidic devices, and other promising areas. Their use as templates, flexible electronics, and supports with controlled wettability and/or adhesion for biorelated applications demonstrate how the unique characteristics of wrinkled interfaces play a distinguishing and remarkable role. The fabrication approaches employed to induce wrinkle formation and the potential to fine-tune the amplitude and period of the wrinkles, their functionality, and their final morphology are thoroughly described. An overview of the main applications in which these buckled interfaces have already been employed or may have an impact in the near future is included. Presents a detailed description of the physical phenomena and strategies occurring at polymer surfaces to produce wrinkled surface patterns; Examines the different methodologies to produce morphology-controlled wrinkled surface patterns by means of physical and chemical treatment methods; Provides clear information on current and potential applications in flexible electronics and biomaterials, which are leading the use of these materials.




Advances in Condensed Matter and Materials Research


Book Description

Nine articles written especially for the series synthesize international research in condensed matter. Among the topics are fiber debonding and bridging toughening in fiber-reinforced brittle matrix composites, analyzing the electron transport phenomena in high- temperature superconductivity materials by studying the band spectrum and its transformation under doping by different impurities, a functional integral approach in superconductivity theory, dye molecules in zeolite L nano crystals for efficient light harvesting, luminescent properties of some substituted 1,8 naphthyridines, and the discrete dependence of powder steels properties on porosity. No information is provided about future volumes. c. Book News Inc.




Design of Polymeric Platforms for Selective Biorecognition


Book Description

This book addresses in an integrated manner all the critical aspects for building the next generation of biorecognition platforms - from biomolecular recognition to surface fabrication. The most recent strategies reported to create surface nano and micropatterns are thoroughly analyzed. This book contains descriptions of the types of molecules immobilized at surfaces that can be used for specific biorecognition, how to immobilize them, and how to control their arrangement and functionality at the surface. Small molecules, peptides, proteins and oligonucleotides are at the core of the biorecognition processes and will constitute a special part of this book. The authors include detailed information on biological processes, biomolecular screening, biosensing, diagnostic and detection devices, tissue engineering, development of biocompatible materials and biomedical devices.




Materiomics


Book Description

This complete, yet concise, guide introduces you to the rapidly developing field of high throughput screening of biomaterials: materiomics. Bringing together the key concepts and methodologies used to determine biomaterial properties, you will understand the adaptation and application of materomics in areas such as rapid prototyping, lithography and combinatorial chemistry. Each chapter is written by internationally renowned experts, and includes tutorial paragraphs on topics such as biomaterial-banking, imaging, assay development, translational aspects, and informatics. Case studies of state-of-the-art experiments provide illustrative examples, whilst lists of key publications allow you to easily read up on the most relevant background material. Whether you are a professional scientist in industry, a student or a researcher, this book is not to be missed if you are interested in the latest developments in biomaterials research.




Soft Matter


Book Description

"Soft matter science is an interdisciplinary field at the interface of physics, biology, chemistry, engineering, and materials science. It encompasses colloids, polymers, and liquid crystals as well as rapidly emerging topics such as metamaterials, memory formation and learning in matter, bioactive systems, and artificial life. This textbook introduces key phenomena and concepts in soft matter from a modern perspective, marrying established knowledge with the latest developments and applications. The presentation integrates statistical mechanics, dynamical systems, and hydrodynamic approaches, emphasizing conservation laws and broken symmetries as guiding principles while paying attention to computational and machine learning advances. The book features introductory chapters on fluid mechanics, elasticity, and stochastic phenomena and also covers advanced topics such as pattern formation and active matter. it discusses technological applications as well as relevant phenomena in the life sciences and offers perspectives on emerging research directions"--




Polymeric Biomaterials for Tissue Regeneration


Book Description

This book reviews state-of-the-art of polymeric biomaterials for regenerative medicine, and highlights advances in both basic science and clinical practice. It summarizes the latest techniques in polymeric scaffold fabrication, delivery carriers, physicochemical property modulation, as well as their influence on adhesion and the performance of biomolecules, cells and tissues. It also describes methods for creating biofunctional surfaces/interfaces and subsequently modulating the host response to implantable materials. Lastly, it discusses the applications of biomaterials and constructs in soft-tissue regenerative medicine. It is a valuable resource for materials scientists and engineers wishing to identify research priorities to fulfill clinical needs and provides physicians with insights into emerging novel biomaterials. This integrated approach also offers engineering students a sense of the relevance of materials science in the development of novel therapeutic strategies.