Solution Sets of Differential Equations in Abstract Spaces


Book Description

This book presents results on the geometric/topological structure of the solution set S of an initial-value problem x(t) = f(t, x(t)), x(0) =xo, when f is a continuous function with values in an infinite-dimensional space. A comprehensive survey of existence results and the properties of S, e.g. when S is a connected set, a retract, an acyclic set, is presented. The authors also survey results onthe properties of S for initial-value problems involving differential inclusions, and for boundary-value problems. This book will be of particular interest to researchers in ordinary and partial differential equations and some workers in control theory.




Generalized Ordinary Differential Equations in Abstract Spaces and Applications


Book Description

GENERALIZED ORDINARY DIFFERENTIAL EQUATIONS IN ABSTRACT SPACES AND APPLICATIONS Explore a unified view of differential equations through the use of the generalized ODE from leading academics in mathematics Generalized Ordinary Differential Equations in Abstract Spaces and Applications delivers a comprehensive treatment of new results of the theory of Generalized ODEs in abstract spaces. The book covers applications to other types of differential equations, including Measure Functional Differential Equations (measure FDEs). It presents a uniform collection of qualitative results of Generalized ODEs and offers readers an introduction to several theories, including ordinary differential equations, impulsive differential equations, functional differential equations, dynamical equations on time scales, and more. Throughout the book, the focus is on qualitative theory and on corresponding results for other types of differential equations, as well as the connection between Generalized Ordinary Differential Equations and impulsive differential equations, functional differential equations, measure differential equations and dynamic equations on time scales. The book’s descriptions will be of use in many mathematical contexts, as well as in the social and natural sciences. Readers will also benefit from the inclusion of: A thorough introduction to regulated functions, including their basic properties, equiregulated sets, uniform convergence, and relatively compact sets An exploration of the Kurzweil integral, including its definitions and basic properties A discussion of measure functional differential equations, including impulsive measure FDEs The interrelationship between generalized ODEs and measure FDEs A treatment of the basic properties of generalized ODEs, including the existence and uniqueness of solutions, and prolongation and maximal solutions Perfect for researchers and graduate students in Differential Equations and Dynamical Systems, Generalized Ordinary Differential Equations in Abstract Spaces and App­lications will also earn a place in the libraries of advanced undergraduate students taking courses in the subject and hoping to move onto graduate studies.




Functional Analysis, Sobolev Spaces and Partial Differential Equations


Book Description

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.




Nonlinear Differential Equations in Abstract Spaces


Book Description

Many problems in partial differential equations which arise from physical models can be considered as ordinary differential equations in appropriate infinite dimensional spaces, for which elegant theories and powerful techniques have recently been developed. This book gives a detailed account of the current state of the theory of nonlinear differential equations in a Banach space, and discusses existence theory for differential equations with continuous and discontinuous right-hand sides. Of special importance is the first systematic presentation of the very important and complex theory of multivalued discontinuous differential equations




Solution Sets of Differential Equations in Abstract Spaces


Book Description

This book presents results on the geometric/topological structure of the solution set S of an initial-value problem x(t) = f(t, x(t)), x(0) =xo, when f is a continuous function with values in an infinite-dimensional space. A comprehensive survey of existence results and the properties of S, e.g. when S is a connected set, a retract, an acyclic set, is presented. The authors also survey results onthe properties of S for initial-value problems involving differential inclusions, and for boundary-value problems. This book will be of particular interest to researchers in ordinary and partial differential equations and some workers in control theory.




Existence Theory for Nonlinear Ordinary Differential Equations


Book Description

We begin our applications of fixed point methods with existence of solutions to certain first order initial initial value problems. This problem is relatively easy to treat, illustrates important methods, and in the end will carry us a good deal further than may first meet the eye. Thus, we seek solutions to Y'. = I(t,y) (1. 1 ) { yeO) = r n where I: I X R n ---+ R and I = [0, b]. We shall seek solutions that are de fined either locally or globally on I, according to the assumptions imposed on I. Notice that (1. 1) is a system of first order equations because I takes its values in Rn. In section 3. 2 we will first establish some basic existence theorems which guarantee that a solution to (1. 1) exists for t > 0 and near zero. Familiar examples show that the interval of existence can be arbi trarily short, depending on the initial value r and the nonlinear behaviour of I. As a result we will also examine in section 3. 2 the dependence of the interval of existence on I and r. We mention in passing that, in the results which follow, the interval I can be replaced by any bounded interval and the initial value can be specified at any point in I. The reasoning needed to cover this slightly more general situation requires minor modifications on the arguments given here.




Solution Sets for Differential Equations and Inclusions


Book Description

This monograph gives a systematic presentation of classical and recent results obtained in the last couple of years. It comprehensively describes the methods concerning the topological structure of fixed point sets and solution sets for differential equations and inclusions. Many of the basic techniques and results recently developed about this theory are presented, as well as the literature that is disseminated and scattered in several papers of pioneering researchers who developed the functional analytic framework of this field over the past few decades. Several examples of applications relating to initial and boundary value problems are discussed in detail. The book is intended to advanced graduate researchers and instructors active in research areas with interests in topological properties of fixed point mappings and applications; it also aims to provide students with the necessary understanding of the subject with no deep background material needed. This monograph fills the vacuum in the literature regarding the topological structure of fixed point sets and its applications.




Almost Periodic and Almost Automorphic Functions in Abstract Spaces


Book Description

This book presents the foundation of the theory of almost automorphic functions in abstract spaces and the theory of almost periodic functions in locally and non-locally convex spaces and their applications in differential equations. Since the publication of Almost automorphic and almost periodic functions in abstract spaces (Kluwer Academic/Plenum, 2001), there has been a surge of interest in the theory of almost automorphic functions and applications to evolution equations. Several generalizations have since been introduced in the literature, including the study of almost automorphic sequences, and the interplay between almost periodicity and almost automorphic has been exposed for the first time in light of operator theory, complex variable functions and harmonic analysis methods. As such, the time has come for a second edition to this work, which was one of the most cited books of the year 2001. This new edition clarifies and improves upon earlier materials, includes many relevant contributions and references in new and generalized concepts and methods, and answers the longtime open problem, "What is the number of almost automorphic functions that are not almost periodic in the sense of Bohr?" Open problems in non-locally convex valued almost periodic and almost automorphic functions are also indicated. As in the first edition, materials are presented in a simplified and rigorous way. Each chapter is concluded with bibliographical notes showing the original sources of the results and further reading.




Differential Equations in Abstract Spaces


Book Description

Differential Equations in Abstract Spaces




Approximation, Optimization and Mathematical Economics


Book Description

The articles in this proceedings volume reflect the current trends in the theory of approximation, optimization and mathematical economics, and include numerous applications. The book will be of interest to researchers and graduate students involved in functional analysis, approximation theory, mathematical programming and optimization, game theory, mathematical finance and economics.