Chemical Thermodynamics


Book Description

This textbook is a general introduction to chemical thermodynamics.




General Thermodynamics


Book Description

Because classical thermodynamics evolved into many branches of science and engineering, most undergraduate courses on the subject are taught from the perspective of each area of specialization. General Thermodynamics combines elements from mechanical and chemical engineering, chemistry (including electrochemistry), materials science, and b




Engineering and Chemical Thermodynamics


Book Description

Chemical engineers face the challenge of learning the difficult concept and application of entropy and the 2nd Law of Thermodynamics. By following a visual approach and offering qualitative discussions of the role of molecular interactions, Koretsky helps them understand and visualize thermodynamics. Highlighted examples show how the material is applied in the real world. Expanded coverage includes biological content and examples, the Equation of State approach for both liquid and vapor phases in VLE, and the practical side of the 2nd Law. Engineers will then be able to use this resource as the basis for more advanced concepts.




Solutions Manual For Chemical Engineering Thermodynamics


Book Description

This book is a very useful reference that contains worked-out solutions for all the exercise problems in the book Chemical Engineering Thermodynamics by the same author. Step-by-step solutions to all exercise problems are provided and solutions are explained with detailed and extensive illustrations. It will come in handy for all teachers and users of Chemical Engineering Thermodynamics.




Essential Thermodynamics


Book Description

This textbook covers basic principles of equilibrium behavior for systems of interest to chemical engineering, including elementary microscopic concepts. A strong emphasis is placed on fundamentals: energy conservation in open and closed systems (first law), temperature, entropy and reversibility (second law), fundamental equations, and criteria for equilibrium and stability. These concepts are then applied to the analysis of energy conversion processes, mixing, phase equilibria, and chemical reactions.




Advanced Thermodynamics for Engineers


Book Description

Although the basic theories of thermodynamics are adequately covered by a number of existing texts, there is little literature that addresses more advanced topics. In this comprehensive work the author redresses this balance, drawing on his twenty-five years of experience of teaching thermodynamics at undergraduate and postgraduate level, to produce a definitive text to cover thoroughly, advanced syllabuses. The book introduces the basic concepts which apply over the whole range of new technologies, considering: a new approach to cycles, enabling their irreversibility to be taken into account; a detailed study of combustion to show how the chemical energy in a fuel is converted into thermal energy and emissions; an analysis of fuel cells to give an understanding of the direct conversion of chemical energy to electrical power; a detailed study of property relationships to enable more sophisticated analyses to be made of both high and low temperature plant and irreversible thermodynamics, whose principles might hold a key to new ways of efficiently covering energy to power (e.g. solar energy, fuel cells). Worked examples are included in most of the chapters, followed by exercises with solutions. By developing thermodynamics from an explicitly equilibrium perspective, showing how all systems attempt to reach a state of equilibrium, and the effects of these systems when they cannot, the result is an unparalleled insight into the more advanced considerations when converting any form of energy into power, that will prove invaluable to students and professional engineers of all disciplines.




Introductory Chemical Engineering Thermodynamics


Book Description

A Practical, Up-to-Date Introduction to Applied Thermodynamics, Including Coverage of Process Simulation Models and an Introduction to Biological Systems Introductory Chemical Engineering Thermodynamics, Second Edition, helps readers master the fundamentals of applied thermodynamics as practiced today: with extensive development of molecular perspectives that enables adaptation to fields including biological systems, environmental applications, and nanotechnology. This text is distinctive in making molecular perspectives accessible at the introductory level and connecting properties with practical implications. Features of the second edition include Hierarchical instruction with increasing levels of detail: Content requiring deeper levels of theory is clearly delineated in separate sections and chapters Early introduction to the overall perspective of composite systems like distillation columns, reactive processes, and biological systems Learning objectives, problem-solving strategies for energy balances and phase equilibria, chapter summaries, and “important equations” for every chapter Extensive practical examples, especially coverage of non-ideal mixtures, which include water contamination via hydrocarbons, polymer blending/recycling, oxygenated fuels, hydrogen bonding, osmotic pressure, electrolyte solutions, zwitterions and biological molecules, and other contemporary issues Supporting software in formats for both MATLAB® and spreadsheets Online supplemental sections and resources including instructor slides, ConcepTests, coursecast videos, and other useful resources




Fundamentals of Chemical Engineering Thermodynamics


Book Description

Fundamentals of Chemical Engineering Thermodynamics is the clearest and most well-organized introduction to thermodynamics theory and calculations for all chemical engineering undergraduates. This brand-new text makes thermodynamics far easier to teach and learn. Drawing on his award-winning courses at Penn State, Dr. Themis Matsoukas organizes the text for more effective learning, focuses on "why" as well as "how," offers imagery that helps students conceptualize the equations, and illuminates thermodynamics with relevant examples from within and beyond the chemical engineering discipline. Matsoukas presents solved problems in every chapter, ranging from basic calculations to realistic safety and environmental applications.




Physical Chemistry


Book Description

In the phase transitions among the solid, liquid, and gaseous forms of water, we see a profound demonstration of how properties at the molecular scale dictate the behavior of the bulk material. As ice is heated beyond its melting point, new avenues for molecular motion become open to the energy being added. Upon entering the gas phase, the water molecules can explore new territory, unavailable to the liquid or solid. These transformations can be seen as a shifting balance between the forces that bind the molecules and the thermal energy that excites these motions--a window through thermodynamics on the intricate mechanisms that drive chemistry.